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1. INTRODUCTION

1.1 An analogy: linguistics vs. information technology

In linguistics, one must confront and manage a multitude of human languages. The overall
attack to deal with such diversity and complexity is to try understanding “the system of
principles, conditions, and rules that are elements or properties of all human languages
. . . the essence of human language” [Chomsky 1975]. (This is Chomsky’s controversial
definition of the “universal grammar”.) Such research cannot be separated from sociol-
ogy, and other human sciences. Similarly, in information technology, we are faced with
a multitude of programming languages, data representations, protocols, and other entities
that are regulated by some sort of grammar. Here, the overallattack must be to understand
the principles, conditions, and rules that underly all use cases for grammars. Grammars
cannot be reduced to a few formal aspects such as the Chomsky hierarchy and parsing al-
gorithms. We rather need a kind of software engineering thatis grammar-awareby paying
full attention to the engineering aspects of grammars and grammar-dependent software.

1.2 The definition of the term grammarware

We coin the term ‘grammarware’ to comprise grammars and grammar-dependent software.

—The termgrammaris used in the sense of all established grammar formalisms and gram-
mar notations including context-free grammars, class dictionaries, XML schemas as
well as some forms of tree and graph grammars. Grammars are used for numerous pur-
poses, e.g., for the definition of concrete or abstract programming language syntax, and
for the definition of exchange formats in component-based software applications.

—The termgrammar-dependent softwareis meant to refer to all software that involves
grammar knowledge in an essential manner. Archetypal examples of grammar-dependent
software are parsers, program converters, and XML documentprocessors. All such soft-
ware eitherliterally involvesor encodes grammatical structure: compare generated vs.
hand-crafted parsers.

1.3 A research agenda for grammarware engineering

This paper is a call-to-arms for setting the employment of grammars in software systems
on a firm engineering foundation. In fact, this paper is a research agenda that promotes an
engineering discipline for grammarware. We use the term “grammarware engineering” to
denote this discipline.

Grammarware engineering is focused on the following credo:

The development and maintenance of grammarware should be such that the
involved grammatical structure is subjected to best practises, tool support and
rigorous methods that in turn are based on grammar-aware concepts and tech-
niques for design, customisation, implementation, testing, debugging, version-
ing and transformation.

The underlying goal is to improve the quality of grammarware, and to increase the pro-
ductivity of grammarware development. Grammars permeate (or shape) software systems.
Hence, we deserve an engineering discipline for grammarware, and we can expect that
grammarware engineering is to the advantage of software development in general.
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1.4 Scenarios of grammarware development

Let us consider a few diverse scenarios of software development, in which different sorts
of grammar knowledge play an essential role. These scenarios pinpoint some issues and
problems regarding the development and maintenance of grammarware:

—As a developer of Commercial Off-The-Shelf software, you want to import user pro-
files in order to promote the user’s transition from an old to anew version, or from a
competing product to your’s; think of web browsers. Such import functionality requires
recovery of the relevant format. Import needs to be robust and adaptive so that all con-
ceivable inputs are parsed and all convertible parts are identified.

—As a developer of database applications, you want to adopt anew screen definition lan-
guage for an information system. An automated solution requires the ability to parse
screen definitions according to the old format, to generate screen definitions according
to the new format, and to define a mapping from the old to the newformat. Here we pre-
sume that screen definitions are not ingrained in program code. Otherwise, additional,
perhaps more involved parsing, unparsing, and mapping functionality will be required.

—As an object-oriented developer, you want to improve static typing for XML process-
ing. That is, you want to replace DOM-based XML access by an XML binding. An
automated solution requires the ability to locate DOM usagepatterns in the code, and
to replace them according to the XML binding semantics. We face grammar knowledge
of at least two kinds: the syntax of the programming languagein which XML access is
encoded, and the schema for the accessed XML data.

—As a tool provider for software re-/reverse engineering, you are maintaining a Java code
smell detector and a metrics analyser. You have started thiseffort in 1996 for Java 1.0,
while you are currently working on an upgrade for Java 1.5. Tosupport more sophisti-
cated smells and metrics, you add intelligence that recognises and handles various APIs
and middleware platforms used in Java applications, e.g., Swing, WebSphere and JBoss.
This intelligence boils down to diverse grammar knowledge.

—As a developer of an in-house application generator, you face a redesign of the domain-
specific language (DSL) that is used to provide input to the generator. You fail to provide
backward compatibility, but you are requested to offer a conversion tool for existing DSL
programs. Furthermore, you are required to handle the problem of generator output that
was manually customised by the programmers. Hence, you might need to locate and
reuse customisation code as it is ingrained in the generatedcode.

—As a developer of an international standard or vendor-specific reference for a program-
ming language, you would like to guarantee that the languagereference contains the
complete and correct grammar of the described language and that the shown sample
programs are in accordance with the described syntax (modulo elisions). One challenge
is here that you need a readable syntax description in the standard or reference as well
as an executable syntax definition for validation.

—As an online service provider, you want to meet your clients’ request to serve new XML-
based protocols for system use. For example, you want to replace an ad-hoc, CGI-
based protocol by instant messaging via Jabber/XMPP, whileyou want to preserve the
conceptual protocol as is. You end up with re-engineering your application such that the
alternation of the protocol technology will be easier in thefuture.
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1.5 Typical engineering aspects of grammarware

The aforementioned scenarios involve various engineeringaspects regarding grammars:

—What is a “good grammar” in the first place — in terms of style or metrics?

—How to recover the relevant grammars in case they are not readily available?

—How to choose among options for implementing grammar-dependent functionality?

—How to systematically transform grammatical structure when faced with evolution?

—How to maintain links between implemented variations on the same grammar?

—How to test grammar-dependent functionality in a grammar-aware manner?

—How to verify grammar-related properties of grammar-dependent functionality?

(And so on.) Even though a body of versatile techniques is available, in reality, grammar-
ware is typically treated without adhering to a proper engineering discipline. Grammar-
ware seems to be second-class software. For instance, program refactoring is a well-
established practise according to modern object-orientedmethodology. By contrast, gram-
mar refactoring is weakly understood and hardly practised.

1.6 A concerted, interdisciplinary research effort

In order to make progress with grammarware engineering, we will need a large scale effort
in the software engineering and programming language communities. The present agenda
takes an inventory, and it identifies open challenges. The next steps are the following. We
need dedicated scientific meetings. PhD students need to pick up the listed challenges.
We need to start working on an engineering handbook for grammarware. We also need
grammarware-aware curricula at universities.

Grammarware engineeringcouldhave been a classic field of computer science already for
decades. After all, grammars and grammar-dependent software are no recent invention.
Grammarware engineering fits well with other fields such as generic language technology,
generative programming, software re-/reverse engineering, aspect-oriented software devel-
opment, program transformation, meta-modelling, and model-driven development. That is,
grammarware engineeringemploysthese fields andcontributesto them. In this complex
context, the focus of grammarware engineering is clearly defined: the engineering aspects
of grammars and grammatical structure in software systems.

1.7 Road-map of the agenda

In Sec. 2, we will compile aninventory of grammarware. In Sec. 3, we will analyse the
reality of dealing with grammarware, which we will have to summarise asgrammarware
hacking. In Sec. 4, we will uncover thegrammarware dilemmain an attempt to explain the
current, suboptimal situation. This agenda has to cut a Gordian knot in order to prepare the
ground for a significant research effort on grammarware engineering. In Sec. 5, we will lay
out thepromisesof an engineering discipline for grammarware. In Sec. 6, we will identify
essentialprinciplesof the emerging discipline. Ultimately, in Sec. 7, we will compile a
substantial list ofresearch challenges, which call for basic and applied research projects.
Throughout the paper, we will survey existing contributions to the emerging engineering
discipline for grammarware.
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A fragment of a BNF grammar that defines the concrete syntax ofa simple language.

[axiom] program ::= declarations statements

[decs] declarations ::= declaration “;” declarations

[nodec] declarations ::= ǫ

[dec] declaration ::= id “:” type

[concat] statements ::= statement “;” statements

[skip] statements ::= ǫ

[assign] statement ::= id “:=” expression

[var] expression ::= id

· · ·

A fragment of a DTD for the XML representation of the organisational structure in a company.

<!DOCTYPE company [
<!ELEMENT company (dept*) >
<!ELEMENT dept (name, manager, unit*) >

<!ATTLIST dept dept_num ID #REQUIRED >
<!ELEMENT unit (employee | dept) >
<!ELEMENT employee (person, salary) >

<!ATTLIST employee busunit IDREF #IMPLIED >
<!ELEMENT person (name, address) > ... ]>

Some algebraic data types in Haskell notation for event traces of the execution of C programs.

data ExecProg = ExecProg [Either ExecStmt EvalExpr ]
data ExecStmt = ExecStmt [Either ExecStmt EvalExpr ]
data EvalExpr = EvalCall FuncCall

| EvalAssign Assign

| EvalOthers [EvalExpr ]
data FuncCall = Call [EvalExpr ] [ExecStmt]
data Assign = Assign [EvalExpr ] Desti

data Desti = · · ·

Fig. 1. Grammar samples:The syntax definition at the top is perhaps the most obvious example of a grammar.
The XML DTD in the middle defines the abstract representationof a company’s organisational structure. It makes
use of specific XML features such as attributes and references. The signature at the bottom defines the structure
of event traces for the execution of C programs. Here, we are specifically interested in tracing assignments and
function calls.

2. AN INVENTORY OF GRAMMARWARE

We use the term grammar as an alias forstructural descriptionsin software systems, i.e.:

Grammar = structural description in software systems
= description of structures used in software systems

Some representative examples of grammars are shown in Fig. 1. Whenever a software
component involves grammatical structure, then we attest agrammar dependency. (We
will also say that the componentcommits to grammatical structure.) In this section, we
will first demarcate our use of the term “grammar”, i.e., “structural description”, and we
will then compile an inventory of grammar formalisms, grammar notations, grammar use
cases, grammar-based formalisms and notations, and forms of grammar dependencies.
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2.1 Structural descriptions

When we say that grammars are structural descriptions, we make a number of informal
assumptions as to what it means to be a structural description. Firstly, we assume that
a grammar (potentially) deals withseveral interrelated categoriesas opposed to a single
category; cf. the nonterminals in a context-free grammar. Secondly, we assume that there
are constructs for theformation of compound structure. Thirdly, we assume that there
are constructs for thechoice among different alternatives; cf. multiple productions for a
nonterminal in a context-free grammar, or the “|” operator in the BNF formalism.

These assumptions are intentionally lax, as to avoid exclusion of grammar forms that we
did not think of or that do not yet exist. However, we can further demarcate the term
grammar by excluding some artifacts and by identifying borderline cases:

—A parser specification isnot a grammar, but it is anenrichedgrammar.

—A type declaration for polymorphic lists is atrivial (parameterised) grammar.

—An attribute grammar [Knuth 1968] is not a grammar in our restricted sense, but it
definitely comprisesa grammar, i.e., the context-free grammar whose derivationtrees
are attributed eventually. It is worth noting that the attribute grammar might comprise
yet another grammar — the one for the structures that are synthesised.

—What is the relationship between the terms “grammar” and “model” (such as software
models in UML)? One direction: a model is not necessarily a grammar because models
can describe aspects other than structure. In particular, asoftware model isnot a gram-
mar because grammars are models of structures, whereas software models are models
of software. However, the class-diagrammatic part of a software modelcouldbe viewed
as a grammar — if the classes, without all behavioural details, lend themselves to a
meaningful description of structures. A good example is a source-codemodel. The
other direction: a grammar is certainly a model, namely a model of structures, but it is,
at best, an incomplete software model because a grammar, by itself, does not model a
software application.

—What is the relationship between the terms “grammar” and “meta-model” (in the sense
of meta-modelling and model-driven development [metamodel.com 2005; Mellor et al.
2003])? There are varying definitions for the latter term. Weadopt the view that a
meta-model is a model of models such as a model of software models. That is, meta-
models describe language constructs for modelling. One direction: we reckon that a
meta-modelincludesa grammar, i.e., the structural description of a modelling language
(as opposed to semantic constraints on models, if any). The other direction:somegram-
mars are meta-models, namely those that describe language constructs for modelling (in
particular, software modelling).

—A relational schema (in the sense of relational databases)is a borderline case. In general,
we do not expect grammarware engineering to subsume relational modelling. Techni-
cally, the relational model comprises details, such as foreign key constraints, that go ar-
guably beyond plain “formation of structure”. Furthermore, the (basic) relational model
lacks expressiveness forgeneralalternatives; it only allows for NULL vs. NOT NULL
values, which correspond to the regular operator “?” in EBNFterminology.
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2.2 Grammar formalisms

We presume that the followingformalismsprovide the foundation for grammars:

—Context-free grammars.

—Algebraic signatures.
—Regular tree and graph grammars.

Clearly, these formalisms differ regarding expressiveness and convenience. Context-free
grammars happen to enable the definition of concrete syntax of programming languages.
Algebraic signatures are suitable for (per-definition) unambiguous abstract syntaxes. Graph
grammars and the underlying schemas cater for graph structures.

There exist all kinds of partial, sometimes ad-hoc mappingsto relate one formalism to the
other. For instance, one canconverta context-free grammar into a signature by discarding
terminals, by inventing a function symbol per production, and finally by recasting produc-
tions as types of function symbols. (Actually, there existsa somewhat forgotten algebraic
interpretation of context-free grammars, which preciselyformalises this direction.) The
inverse direction can also be served by assuming a fixed syntax for function symbols such
as prefix notation with parentheses and commas.

A grammar can be amenable to differentinterpretations. Since we want to emphasise that a
grammar is a structural description, some interpretationsare more meaningful than others.
Let us consider some options for context-free grammars. First we note that it is of minor
relevance whether we consider an acceptance-based vs. a generation-based semantics. For
our purposes, a useful semantics of a context-free grammar is the set of all valid derivation
trees [Aho and Ullman 73]. By contrast, the de-facto standard semantics of a context-
free grammar is its generated language [Aho and Ullman 73] — aset of strings without
attached structure. We contend that this semantics does notemphasise a grammar’s role to
serve as a structural description.

2.3 Grammar notations

Actual structural descriptions are normally given in somegrammar notation, for example:

—Backus-Naur Form (BNF [Backus 1960]), Extended BNF (EBNF [ISO 1996]).

—The Syntax Definition Formalisms (SDF [Heering et al. 1989;Visser 1997]).
—The Abstract Syntax Description Language (ASDL [Wang et al. 1997]).

—Abstract Syntax Notation One (ASN.1 [Dubuisson 2000]).

—Syntax diagrams [Herriot 1976; McClure 1989; Braz 1990].

—Algebraic data types as in functional languages.
—Class dictionaries [Lieberherr 1988].

—UML class diagrams without behaviour [Gogolla and Kollmann 2000].

—XML schema definitions (XSD [W3C 2003]).

—Document type definitions (DTD [W3C 2004]).

In fact, there are so many grammar notations that we do not aimat a complete enumeration.
It is important to realise that grammar notations do not necessarily reveal their grammar
affinity via their official name. For instance, a large part ofall grammars in this world are



10 · Toward an engineering discipline for GRAMMARWARE

“programmed” in the type language of some programming language, e.g., in the common
type system for .NET, or as polymorphic algebraic data typesin typed functional program-
ming languages. (We recall the last example in Fig. 1, which employed algebraic data
types.)

Some grammar notations directly resemble a specific grammarformalism. For instance,
BNF corresponds to context-free grammars. Other grammar notations might be more con-
venient than the underlying formalism, but not necessarilymore expressive — in theformal
sense of the generated language. For instance, EBNF adds convenience notation for reg-
ular operators to BNF. Hence, EBNF allows us to describe structures at a higher-level of
abstraction, using a richer set of idioms, when compared to BNF. Yet other grammar no-
tations appeal to a certain programmatic use. For instance,class dictionaries appeal to the
object-oriented paradigm; they cater immediately for inheritance hierarchies. Finally, there
are also grammar notations that strictly enhance a given formalism or a mix of formalisms.
For instance, XSD is often said to have its foundation in treegrammars, but, in fact, it goes
beyond simple tree grammars due to its support for references and unstructured data.

As with grammar formalisms, some couples of grammar notations are amenable to uni-
directional or even bi-directional conversion. For instance, one can convert an EBNF
grammar to a BNF grammar and vice versa. We also call this “yaccification” and “deyac-
cification” for obvious reasons [Lämmel and Wachsmuth 2001]. The SDF grammar format
is richer than pure BNF and EBNF; SDF adds constructs for modularisation and disam-
biguation. Hence, BNF grammars are easily converted into SDF grammars, but an inverse
conversion must be necessarily incomplete.

2.4 Grammar use cases

The grammars in Fig. 1 arepure grammars, i.e., plain structural descriptions. Neverthe-
less, we can infer hints regarding the intended use cases of those grammars. The BNF at
the top of the figure comprises details ofconcrete syntaxas needed for a language parser
(or an unparser). The DTD in the middle favours amarkup-based representationas needed
for XML processing, tool interoperability, or external storage. Also, the provision of refer-
ences from employees to their departments (cf. ID and IDREF)suggests that the use case
asks for “easy” navigation from employees to top-level departments (“business units”) —
even though this provision is redundant because an employeeelement is unambiguously
nested inside its business unit. The algebraic signature atthe bottom of the figure does not
involve any concrete syntax or markup, but it addresses nevertheless a specific use case.
That is, the description captures the structure of (problem-specific) event traces of program
execution. Such event grammars facilitate debugging and assertion checking [Auguston
1995]. Note that the algebraic signature for the event traces differs from the (abstract)
syntax definition of the C programming language — even thoughthese two grammatical
structures are related in a systematic manner.

For clarity, we use the termgrammar use caseto refer to the purpose of a (possibly en-
riched) structural description. We distinguishabstractvs.concrete use cases. An abstract
use case covers the overall purpose of a grammar without reference to operational argu-
ments. For instance, the use cases “syntax definition” or “exchange format” are abstract.
A concrete use case commits to an actual category of grammar-dependent software, which
employs a grammar in a specific, operational manner. For instance, “parsing” or “seriali-
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sation” are concrete use cases. Even the most abstract use cases hint at some problem do-
main. For instance, “syntax definition” hints at programming languages or special-purpose
languages, and “exchange format” hints at tool interoperability.

Here are details for representative examples of abstract grammar use cases:

—Source-code modelsare basically syntax definitions, but they are enriched withfeatures
such as annotation, scaffolding, and markup [Purtilo and Callahan 1989; Heuring et al.
1989; Koschke and Girard 1998; Sellink and Verhoef 2000b; Mamas and Kontogiannis
2000; Holt et al. 2000; Sim and Koschke 2001; Malton et al. 2001; Cordy et al. 2001;
Kort and Lämmel 2003b; Winter 2003]. Also, source-code models tend to be defined
such that they are effectively exchange formats at the same time.

—Intermediate program representationsare akin to syntax definitions except that they are
concerned with specific intermediate languages as they are used in compiler middle and
back-ends as well as static analysers. Representative examples are the formats PDG and
SSA [Ferrante et al. 1987; Cytron et al. 1991]. Compared to plain syntax definitions,
these formats cater directly for control-flow and data-flow analyses.

—Domain-specific exchange formatscater for interoperation among software components
in a given domain. For instance, the ATerm format [van den Brand et al. 2000] addresses
the domain of generic language technology, and the GXL format [Holt et al. 2000]
addresses the domain of graph-based tools. The former format is a proprietary design,
whereas the latter format employs XML through a domain-specific XML schema.

—Interaction protocolscater for component communication and stream processing in
object-oriented or agent-based systems. The protocols describe the actions to be per-
formed by the collaborators in groups of objects or agents [Odell et al. 2001; Lind 2002].
Such protocols regulate sequences of actions, choices (or branching), and iteration (or
recursive interactions). For instance, session types [Vallecillo et al. 2003; Gay et al.
2003] arguably describe interaction protocols in a grammar-like style.

There are just too many concrete grammar use cases to list them all. We would even feel un-
comfortable to fully categorise them because this is a research topic on its own. We choose
the general problem domain of language processing (including language implementation)
to list someconcrete grammar use case. In fact, we list typical languageprocessors or com-
ponents thereof. These concrete use cases tend to involve various syntaxes, intermediate
representations, source-code models and other sorts of grammars:

—Debuggers [Auguston 1995; Olivier 2000].
—Program specialisers [Jones et al. 1993; Consel et al. 2004].
—Pre-processors [Favre 1996; Spinellis 2003] and post-processors.
—Code generators in back-ends [Emmelmann et al. 1989; Fraser et al. 1992].
—Pretty printers [van den Brand and Visser 1996; de Jonge 2002].
—Documentation generators [Sun Microsystems 2002; Marlow2002].

In this agenda, all the grammar use cases that we mention are linked tosoftware engineer-
ing including program development. One could favour an even broader view on grammar-
ware. Indeed, in [Mernik et al. 2004], the authors revamp theclassic term “grammar-based
system” while including use cases that are not just related to software engineering, but also
to artificial intelligence, genetic computing, and other fields in computer science.
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2.5 Meta-grammarware

By itself, a grammar is not executable in the immediate senseof a program. It requires
commitment to a concrete use case and usually also an enriched grammar before we can
view it as an executable specification (or a program). We use the termmeta-grammar-
ware to refer to any software that supports concrete grammar use cases by some means
of meta-programming, generative programming or domain-specific language implementa-
tion [Eisenecker and Czarnecki 2000; van Deursen et al. 2000].

The archetypal example of meta-grammarware is a program generator that takes an (en-
riched) grammar and produces an actual software component such as a parser. In practise,
meta-grammarware is often packaged in frameworks for software transformation, program
analysis, language processing, and program generation. Examples of such frameworks
include the following: ASF+SDF Meta-Environment [Klint 1993; van den Brand et al.
2001], Cocktail [Grosch and Emmelmann 1991], Cornell Synthesizer Generator [Reps
and Teitelbaum 1984], DMS [Baxter 1992], Eli [Gray et al. 1992], FermaT [Ward 1999],
GENTLE [Schröer 1997], Lrc [Kuiper and Saraiva 1998], Progres [Progres group 2004],
Refine [Smith et al. 1985; Abraido-Fandino 1987], RIGAL [Auguston 1990], S/SL [Holt
et al. 1982], Stratego [Visser 2001a], Strafunski [Lämmeland Visser 2003], TXL [Cordy
et al. 2002].

There are a few use cases of meta-grammarware that allow for the immediate derivation of
the desired software component from plain grammatical structure. For instance, the gen-
eration of an object-oriented API for matching, building and walking over grammatically
structured data [Wallace and Runciman 1999; de Jonge and Visser 2000; Sim 2000; Jong
and Olivier 2004; Lämmel and Visser 2003; Moreau et al. 2003] is readily possible for
algebraic signatures or suitably restricted context-freegrammars.

Most use cases of meta-grammarware require enriched structural descriptions, for instance:

—Parser specificationssuch as those processed by the YACC tool [Johnson 1975] or any
other parser generator. These specifications typically contain additional elements such
as the parser-to-lexer binding, semantic actions, and pragmas.

—Test-set specificationssuch as those processed by the the DGL tool [Maurer 1990] or
any other grammar-based test-data generator. These specifications annotate the basic
grammar with control information as to guide test-data generation.

—Pretty-printing specifications[van den Brand and Visser 1996; de Jonge 2002]. These
specifications attach horizontal and vertical alignment directives to the grammar struc-
ture as to guide line breaks and indentation.

—Serialisable object models, where meta-data for serialisation is attached to classes and
fields in the object model such that serialisation (and de-serialisation) functionality can
be generated by a tool or it can be defined in terms of reflection.

Our choice of the term meta-grammarware is inspired by Favrewho has coined the term
metaware[Favre 2003] in the meta-modelling context [metamodel.com2005]. That is,
metaware is application-independent software that helps producing software applications
on the basis of suitable meta-models. We emphasise that the term meta-grammarware
applies to grammarware rather than software models and meta-modelling.
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2.6 Grammar-based formalisms and notations

There are actually a number of more fundamentalgrammar-based formalismsand corre-
sponding notations. These are prominent examples of such grammar-based formalisms:

—Attribute grammars [Knuth 1968; Paakki 1995].

—General tree and graph grammars [Comon et al. 2003; Ehrig etal. 1996].

—Definite clause grammars (DCGs) [Pereira and Warren 1980].

—Advanced grammar formalisms for visual languages [Marriott and Meyer 1998].

—Logic programs (cf. the grammatical view in [Deransart andMaluszyński 1993]).

Corresponding grammar-based notations can be used for the implementation of concrete
grammar use cases. For instance, the Progres framework [Progres group 2004] supports
graph grammars, while compiler compilers such as Cocktail [Grosch and Emmelmann
1991], Cornell Synthesizer Generator [Reps and Teitelbaum1984] and Eli [Gray et al.
1992] support attribute grammars.

We note that the distinction fundamental grammar formalisms vs. specification languages
for meta-grammarware is not exact. For instance, parser specifications in the sense of
YACC are often viewed as an example of attribute grammars. The difference is of an ab-
stract, conceptual kind: grammar-based formalisms provide formal, computational frame-
works with different assorted declarative and operationalsemantics. By contrast, speci-
fication languages for concrete grammar use cases were designed back-to-back with the
meta-grammarware that supports them.

The aforementioned grammar-based formalisms have in common that the formation of ba-
sic grammatical structure is still traceable in the otherwise enriched structural descriptions.
In Fig. 2, we provide illustrations. We discuss a few examples of the relationship between
basic structural description and complete description:

—An attribute grammar starts from a context-free grammar, while each nonterminal is as-
sociated with attributes, and each production is associated with computations and condi-
tions on the attributes of the involved attributes. The basic context-free grammar remains
perfectly traceable in the completed attribute grammar.

—Likewise, the attributed multi-set grammar [Golin 1991] in Fig. 2 starts from the pro-
ductions of a multi-set grammar, while there are geometric attributes and correspond-
ing computations and conditions. The choice of a multi-set grammar (as opposed to a
context-free grammar) implies that formation of structureis based on sets rather than
sequences.

—The definite clause grammar in Fig. 2 is more entangled in thesense that semantic
actions for checking context conditions are injected into the context-free productions.
However, the pure productions were easily extracted, if necessary.

—Regular graph grammars are still in accordance with our assumptions for structural de-
scriptions. Most applications of graph grammars [Nagl 1980; Hoffmann 1982; Nagl
1985; Schürr 1990; 1994; 1997] require more general graph grammars. Given a gen-
eral graph grammar, we can again identify a basic structuraldescription, namely the
underlyinggraph schema. Such a schema defines types of nodes and edges.
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A definite clause grammar for statically correct programs.

program --> declarations([],L), statements(L).

declarations(L0,L2) --> declaration(L0,L1), [";"], declarations(L1,L2).
declarations(L,L) --> [].

declaration(L,[(I,T)|L])
--> [id(I)], [":"], type(T), { \+ member((I,_),L) }.

statements(L) --> statement(L), [";"], statements(L).
statements(_) --> [].

statement(L) --> [id(I)], [":="], expression(L,T), { member((I,T),L) }.

expression(L,T) --> [id(I)], { member((I,T),L) }.
...

An attributed multi-set grammar for horizontally aligned lists separated by line segments.

[a1] List → HorLineSeg
List0.xmin := HorLineSeg.xmin

List0.xmax := HorLineSeg.xmax

List0.ymin := HorLineSeg.ymin

List0.ymax := HorLineSeg.ymax

List0.ycenter := HorLineSeg.ycenter

[a2] List0 → HorLineSeg Element List1
Element.ycenter = HorLineSeg.ycenter

HorLineSeg.ycenter = List1.ycenter

HorLineSeg.xmax = Element.xmin

Element.xmax = List1.xmin

List0.xmin := HorLineSeg.xmin

List0.xmax := List1.xmax

List0.ymin := min(min(HorLineSeg.ymin, Element.ymin), List1.ymin)
List0.ymax := max(max(HorLineSeg.ymax , Element.ymax), List1.ymax)
List0.ycenter := Element.ycenter

Fig. 2. Illustration of grammar-based formalisms:The definite clause grammar at the top refines the syntax
definition from Fig. 1. Extra semantic actions (cf.{ ... }) establish type correctness with regard to a symbol
table L. The attributed multi-set grammar at the bottom defines the visual syntax of horizontally aligned lists:
think of x y z . There are constraints on the geometric attributesxmax , xmin, etc. that ensure line segments
and list elements to be horizontally aligned along a centre of meaning.

2.7 Commitment to grammatical structure

It is trivial to observe that parser specifications (and likewise the generated parsers) in-
volve grammar dependencies because each such specificationis basedon a structural de-
scription quite obviously. More generally, the use of any grammar-based formalism or
meta-grammarware implies grammar dependencies of such a trivial kind. However, soft-
ware components tend to commit to grammatical structure by merelymentioning patterns
of grammatical structure giving rise to more scattered grammar dependencies.

The modern, archetypal example is the scenario of a (problem-specific) XML document
processor, be it an XSLT program. This program commits to thegrammatical structure
for the input, as expressed in patterns formatched input. Also, the processor is likely to
commit to the grammatical structure for the output, as expressed in patterns forbuilt output.
Notice that the underlying program merely refers to grammatical structure (for input and
output), but it cannot be viewed as an enriched structural representation by itself. As an
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aside, the document processor is “driven” by (the grammatical structure of) theinput with
a subordinated commitment to (the grammatical structure of) the output.

The fact that grammatical structure is entangled in programs is, to some extent, indented
and it is inherent to grammar-based programming. Many software components, regardless
of the used programming language and programming paradigm,end up committing to
grammatical structure. Here are diverse examples:

—In imperative and object-oriented programs, one can use APIs to operate on grammati-
cally structured data, e.g., to match, build and walk over data. This approach is widely
used whenever components for language processing or document processing are en-
coded in mainstream languages. The APIs for data access are often generated by pro-
gram generators [Grosch 1992; Visser 2001b; Jong and Olivier 2004]. Theuseof the
API corresponds to commitment to grammatical structure.

—In functional and logic programs, heterogeneous tree-shaped data is manipulated on a
regular basis. Depending on the fact whether we look at a typed or untyped language,
the grammatical structure is available explicitly or implicitly (through use in code or
documentation). As an aside, there is no need for hand-crafted or generated APIs for data
access, when compared to mainstream imperative and OO languages, because functional
and logic languages support term matching and building natively.

—Some approaches to term rewriting [van den Brand et al. 1998; Moreau et al. 2003] target
language processing. For instance, the ASF+SDF Meta-Environment [Klint 1993; van
den Brand et al. 2001] employs a marriage of a syntax definition formalism (SDF [Heer-
ing et al. 1989]) for the terms to be processed and an algebraic specification formalism
(ASF [Bergstra et al. 1989]) for the actual rewriting rules.

—Grammar knowledge can also be expressed by the mere use of generic combinator li-
braries for concrete grammar use cases such as parsing, pretty-printing, or generic traver-
sal [Hutton and Meijer 1998; Swierstra 2001; Hughes 1995; L¨ammel and Visser 2002].
The required combinators are provided as abstractions in the programming language at
hand, e.g., as higher-order functions in the case of functional programming. The encod-
ing of grammatical structure boils down toapplicationsof the combinators.

—Reflective and aspect-oriented functionality commits to grammatical structure because
the employed metaobject protocols and join point models [Kiczales et al. 1991; Kicza-
les et al. 1997; Aßmann and Ludwig 1999] are based on grammars. Most notably,
these protocols or models are ingeniously related to the abstract syntax of the under-
lying programming language. A more concrete scenario is debugging based on event
grammars [Auguston 1995], where the steps of program execution are abstracted in a
grammatical event structure, which is aligned with the abstract syntax of the language.

—Any library (in any language) that offers an API for the construction (or “formation”) of
functionality presumes that user code commits to the API, which corresponds to com-
mitment to grammatical structure in a broader sense. There are other mechanisms for the
systematic construction of functionality or entire software systems, which give rise to
similar commitments. Examples include template instantiation, application generation,
system composition, and program synthesis [Smith 1990; Eisenecker and Czarnecki
2000; Batory et al. 1994; Jarzabek 1995; Thibault and Consel1997].
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We note that commitment to grammar knowledge in programs does not necessarily imply
thatprecise patternsof grammatical structure are to be expected in source code. For in-
stance, industrial compiler front-ends are often hand-crafted. There are even techniques
for grammarware development that intentionally depart from a strict grammar-based ap-
proach. For instance, the frameworks RIGAL [Auguston 1990]and S/SL [Holt et al. 1982]
provide relatively free-wheeling idioms for parsing. An impure style of encoding gram-
matical structure is also practised in languages like Perl or Python; see [Klusener et al.
2005] for an example.

3. STATE OF THE ART: GRAMMARWARE HACKING

Given the pervasive role of grammars in software systems anddevelopment processes,
one may expect that there exists a comprehensive set of best practises adding up to an
engineering discipline for grammarware. However:

In reality, grammarware is treated, to a large extent, in an ad-hoc manner with
regard to design, implementation, transformation, recovery, testing, etc.

We will first contrast a typical case of wide-spread ad-hoc treatment with the potential of
an engineering approach. Then, we will substantiate a lack of best practises at a more
general level. Afterwards, we will argue that the lack of best practises is not too surprising
since even foundations are missing. Also, there are no comprehensive books on the subject,
neither do university curricula pay sufficient attention yet.

3.1 Hacking vs. engineering

To give a prototypical example of current ad-hoc approaches, we consider the development
of parsers, as needed for software re-/reverse engineeringtools. The common approach
(shown on the left-hand side in Fig. 3) is to manually encode agrammar in the idiosyncratic
input language of a specific parser generator. We encounter just one instance of grammar-
ware tooling in this process: a parser generator. The driving principle is to appeal to the
grammar class that is supported by the parser generator — often done by trial and error.
The codebase, that must be parsed, is the oracle for this process.

There are a number of techniques that could be put to work in order to convert from hacking
to engineering. Some of these techniques are illustrated onthe right-hand side in Fig. 3:

—A technology-neutral grammar isrecovered semi-automaticallyfrom available grammar
knowledge, e.g., from a language reference that contains “raw” grammatical structure.
In this process, the grammar is incrementally improved by transformations that model
corrections and provisions of omissions. We can leverage tools for grammar extraction
and transformation.

—We assume that the grammar can be executed by a prototype parsing framework. At this
stage, the quality of parse trees is irrelevant. Also, we might largely ignore the issue of
grammar-class conflicts and grammar ambiguities. We use thegrammar as an acceptor
only. The codebase drives the incremental improvement of the grammar.

—Parser specifications arederived semi-automaticallyfrom the recovered grammar using
tools that customise grammars for a certain technology. Different parsing technologies
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Fig. 3. Parser development:The left-hand side illustrates common practise. Grammar knowledge, as contained
in a language reference, is coded directly as a proprietary parser specification. Options for improvements are
shown on the right-hand side. A technology-neutral grammaris recovered from the grammar knowledge, and
subsequent customisation can target different parser technologies. The parsers are not just tested against the
codebase of interest, but they are also stress-tested. Extra grammarware tooling supports this process.

can be targeted as opposed to an early commitment to a specifictechnology. The cus-
tomisation process is likely to require input from the grammarware engineer.

—There are opportunities for quality assurance by means of testing. We can stress-test
the derived parsers using huge generated test-data sets. Wecan test a reference parser
with positive and negative cases (not shown in the figure). Wecan perform a coverage
analysis for the given codebase (not shown in the figure) to see how representative it is.

We have exercised elements of this approach in our team for a string of languages, e.g., for
Cobol [Lämmel and Verhoef 2001b], which is widely used in business-critical systems, and
for PLEX [Sellink and Verhoef 2000a], which is a proprietarylanguage used at Ericsson.

3.2 Lack of best practises

Our claim about grammarware hacking can be substantiated with a number of general
observations that concern the treatment of grammars in software development:

—There is no established approach for adapting grammars in atraceable and reliable man-
ner — not to mention the even more difficult problem of adapting grammatical struc-
ture that is ingrained in grammar-dependent software. Thisis a major problem because
grammatical structure is undoubtedly subject to evolution.
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—There is no established approach for maintaining relationships between grammatical
structure as it is scattered over different grammar variations and grammar-dependent
software components. This situation implies a barrier for evolution of grammarware.

—There is no established approach for delaying commitment to specific technology for
the implementation of grammar use cases. Specific technology implies idiosyncratic
notations, which make it difficult to alter the chosen technology and to reuse parts of the
solution that are conceptually more generic.

The severity of the lack of best practises is best illustrated with yet another example of large
scale. There exists a widespread belief thatparser generationcounts as a good grammar-
biased example of automated software engineering. This belief is incompatible with the
fact that some major compiler vendors do not employ any parser generator. (This claim
is based on personal communication. The vendors do not wish to be named here.) One
of the reasons that is sometimes cited is the insufficient support for the customisation of
generated parsers. Another limitation of parser generators is that they do not provide suf-
ficient programmer support for the grammar’s convergence tothe properties required by
the technology. This leads to laborious hacking: cf. conflict resolution with LALR(1); cf.
disambiguation with generalised LR parsing. Parser development is still a black art [van
den Brand et al. 1998; Blasband 2001]. So if anyone is saying that grammarware engi-
neering is a reality just because we have (many) parser generators, then this is not just a
too restricted understanding of the term grammarware engineering; even the implicit claim
about the adoption of parser generators does not hold as such.

3.3 Lack of comprehensive foundations

In fact, there is not just a lack of best practises. Even the fundamentals are missing:

—There is no “discipline of programming” (of the kind [Dijkstra 1976]) for grammars
and grammar-dependent software. Likewise, there is no “mathematics of program con-
struction” for grammars and grammar-dependent software. At a pragmatic level, we do
not even have design patterns to communicate, and we also lack an effective notion of
modular grammarware.

—There is no comprehensivetheory for transforming grammarware, there are at best some
specific kinds of grammar transformations, and some sorts ofarguably related program
and model transformations. We also lack a dedicated model for version management.

—There is no comprehensivetheory for testing grammarware; this includes testing gram-
mars themselves as well as testing grammar-dependent software in a grammar-aware
manner. We also lack metrics and other quality notions.

—There is no comprehensivemodel for debugging grammarwareas there exists for other
sorts of programs, e.g., the box/port model for logic programming [Byrd 1980]. Debug-
ging parsers or other grammar-dependent software is a blackart.

—There is no unifiedframework for relating major grammar forms and notationsin a
reasonably operational manner. Theoretical expressiveness results provide little help
with the mediation between the grammar forms in actual grammarware development.
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3.4 Lack of books on grammarware

It is instructive to notice how little knowledge on grammarware is available in the form
of textbooks or engineering handbooks. Even in restricted domains, there are hardly text-
books that cover engineering aspects. For instance, texts on compiler construction, e.g.,
[Aho and Ullman 73; Aho et al. 1986; Wilhelm and Maurer 1995],go into details of pars-
ing algorithms, but they do not address engineering aspectssuch as grammar style, gram-
mar metrics, grammar customisation, evolutionary grammartransformations, and grammar
testing. There exist a few textbooks that discuss particular frameworks for generic language
technology or compiler construction, e.g., [van Deursen etal. 1996; Schröer 1997], with-
out coverage of general engineering aspects. There exist textbooks on problem domains
that involve grammar-based programming techniques. For instance, there is a comprehen-
sive textbook on generative programming [Eisenecker and Czarnecki 2000]. There is no
such book for grammar-based software transformation. There exist a few textbooks on
paradigms for grammar-based programming techniques, e.g., attribute grammars [Alblas
and Melichar 1991] and graph transformation [Ehrig et al. 1996]. Again, these books fo-
cus on a specific paradigm without noteworthy coverage of theengineering aspects of the
involved grammars.

3.5 Lack of coverage in curricula

In the last three decades or so, parsing algorithms and compiler construction formed in-
tegral parts of computer science curricula at most universities. The default host for these
topics was indeed a compiler class. Some related, theoretical aspects, such as the Chom-
sky hierarchy, were likely to be covered in a class on foundations of computer science.
Engineering aspects of grammarware have never been coveredbroadly. It is conceivable
that a modern compiler class [Griswold 2002] incorporates more software engineering in
general, and engineering aspects of grammars (as they occurin compilers) in particular.

A dedicated grammarware class will be more comprehensive interms of the engineering
aspects it can cover. Also, such a class will be a strong host for discussing different prob-
lem domains for grammarwareincludingcompiler construction. Over the last few years,
the fields of meta-modelling and model-driven development (MDD) have received ample
attention from the research community, and this trend couldfully reach curricula soon.
A meta-modelling/MDD class can be customised such that it covers technical aspects of
grammarware engineering, e.g., the different grammar notations and their relationships,
the various grammar use cases and grammar-based testing. Likewise, classes on software
re-/reverse engineering, if they became popular, can be made more grammar-aware.

4. THE GRAMMARWARE DILEMMA

We have shown that even though grammarware permeates software systems, its engineer-
ing aspects are somewhat neglected. Here is what we call the grammarware dilemma:

Improving on grammarware hacking sounds like such a good idea!
Why did it not happen so far?
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4.1 Unpopular grammarware research

Part of the answer lies in apopularity problemof grammar research. Grammars in the sense
of definitions of string languages are well-studied subjects in computer science. Basic re-
search on grammars and parsing was a wave of the 1960s and 1970s. The pervasiveness
of grammars in software systems was not yet so obvious at the time. Hence, engineering
aspects did not get into the focus. We might see now the beginning of a second wave of
grammar research, where a new generation of researchers rediscovers this theme, while
being driven by engineering aspects. According to Thomas Kuhn’s “The Structure of Sci-
entific Revolutions” [Kuhn 1970], research generally tendsto go in such waves, while so-
cial issues play an immanent role in this process. When grammar-enthusiastic researchers
of the first wave turned into senior researchers, then their junior staff often favoured the
exploration of different territory.

4.2 Myths about grammarware

The grammarware dilemma must also be explained in terms of myths about grammar-
ware. These myths are barriers for anyone who wants to do research on grammarware.
By naming these myths, we hope to prepare the ground for work on a comprehensive
engineering discipline for grammarware.

—Myth “Grammarware engineering is all about parser development.”

In any language processor, the front-end with its parsing functionality is so overwhelm-
ingly visible that one can easily neglect all the other grammars that occur in a language
processor: different abstract syntaxes with variations onannotations, eliminated patterns
due to normalisation, preprocessing information, and others. Software components that
do not even start from any concrete syntax are easily neglected as grammarware al-
together. For instance, a number of mainstream technologies for aspect-oriented pro-
gramming use XML at the surface for their pointcut languagesrather than any concrete
syntax. The underlying schema for pointcuts and functionality based on it should still
be subjected to grammarware engineering.

—Myth “Grammarware engineering is all about language processing.”

Incidentally, our reply to the parsing myth invites for sucha reduction. However, there
are clearly grammar use cases that do not deal with language processing. For instance,
the use case “interaction protocol” is not related to language processing according to
common sense. Another example: the problem of deriving hierarchical (XML-based)
views on relational data in a database, as addressed by various data access APIs in mod-
ern programming environments, is about data processing rather than language process-
ing. Nevertheless, the language processing myth is actually a useful approximation of
the scope of grammarware engineering, while it is importantto adopt a broad view
on languages: programming languages, domain-specific languages, configuration lan-
guages, modelling languages.

—Myth “XML is the answer”

Recall the question: what are the software engineer’s methods to design, customise,
implement, . . . and test grammars; how to handle grammaticalstructure that is imple-
mented in software components? “XML grammars” (i.e., DTDs,XML schemas, etc.)
are in need of an engineering discipline as much as any other grammar notation. Issues
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of schema evolution, co-evolution of schema-dependent software, and schema-aware
testing of schema-based software are all urgent research topics in the “narrow” XML
context. Also, XML offers new challenges for grammarware engineering. For instance,
the mere mapping between different grammar notations is absolutely non-trivial if an
(arbitrary) XML schema is involved on either side. Finally,XML lacks support for
some grammar use cases; most notably for concrete syntax definitions.

—Myth “Meta-modelling is the answer”

We rehash: Grammarware engineering addresses developmentand maintenance of gram-
mars and grammar-dependent software. By contrast, meta-modelling focuses on the pro-
vision of meta-models, i.e., models of models, in particular: models of software models.
According to Sec. 2.1, grammars and meta-models are not in any simple equivalence or
subsumption relationship, which implies that meta-modelling and grammarware engi-
neering are complementary. In particular, most grammars tend to be models (of struc-
tures) rather thanmeta-models of anything. One might say that “meta-modelling for
grammars” can be understood to cover the field of “grammar modelling languages”
(BNF, EBNF, ASN.1, etc.), which corresponds, indeed, to a certain part of grammar-
ware engineering. It is hard to see how contemporary meta-modelling would address
the technical challenges in grammarware engineering, e.g., transformation and testing
of grammar-dependent software, customisation of grammarsfor use cases, or commit-
ment to common technology options.

—Myth “Grammarware engineering is a form of model-driven development”

What is model-driven (software) development (MDD) in the first place? MDD is an
emerging field. Our current perception of MDD is inspired by [Mellor et al. 2003; Selic
2003; Favre 2004]: MDD aims at a model-centric approach to software development,
where models are systematically transformed into actual software applications. Nor-
mally, support for round-trip engineering is also required, i.e., changes to the software
can be pushed back into the models. According to Sec. 2.1, grammars and models are
not in any simple equivalence or subsumption relationship,but one could still want to
argue that grammarware engineering is actually an instanceof MDD, i.e., grammar-
driven development (GDD) or MDD for grammarware. We do not object to this view,
and recent MDD literature indeed recognises grammarware asone typical “technolog-
ical space” in the broader MDD context [Kurtev et al. 2002; Favre 2004]. In terms of
aspirations, the two fields differ as follows:

—MDD aspires to revolutionise software development by favouring models over pro-
grams, modelling over programming, model transformationsover code revisions.

—Grammarware engineering is grammar-biased and “conservative”: it targets gram-
matical structure in all the grammar use cases that have beenexisting for decades.

In Fig. 4, we compare the mythical (or perceived) view and theproposed view on grammar-
ware. The mythical view has not triggered an effort on grammarware engineering. The
proposed view emphasises the pervasiveness of ingrained grammar dependencies as op-
posed to merely the grammars that reside within compiler front-ends. The proposed view
justifies a major effort on grammarware engineering.
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Fig. 4. In need of a paradigm shift:On the left-hand side, we only care about obvious grammar forms, namely the
ratio of “all software” to “grammars in compiler front-ends”. On the right-hand side, we admit two important
facts: (i) there are many grammars other than those in compiler front-ends; (ii) ingrained grammar dependencies
have a deep impact on most software.

5. PROMISES OF GRAMMARWARE ENGINEERING

At this point, the reader might face the following question:

Somehow we managed to deal with all these kinds of grammarware for decades.
So what? That is, what are the potential benefits for IT?

The overall promise of grammarware engineering is that it leads to improved quality of
grammarware and to increased productivity of grammarware development. These promises
should provide a good incentive since grammars permeate software systems and software
development. Of course, it is difficult to justify such general claims at this time. To provide
some concrete data, we will report on two showcases (or even success stories). Afterwards,
we will identify more detailed promises on the basis of theseshowcases, but we will also
refer to further scattered experiences with engineering aspects of grammarware.

5.1 Showcase: grammar recovery

This showcase is discussed in detail in [Lämmel and Verhoef2001b; Lämmel 2005]. Using
elements of the emerging engineering discipline for grammarware, we were able to rapidly
recover a relatively correct and complete syntax definitionof VS Cobol II. The starting
point for this recovery project was IBM’s industrial standard for VS Cobol II [IBM Cor-
poration 1993]. The syntax diagrams had to be extracted fromthe semi-formal document,
and about 400 transformations were applied to the raw syntaxin order to add missing con-
structs, to fix errors, and to ultimately obtain a grammar that could be used for parsing.
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The recovery project was completed in just a few weeks, whichincluded the development
of simple tools for diagram extraction and grammar transformation. After that period, we
were able to parse all the VS Cobol II code that was available to us (several millions lines).
We should note that additional effort will be needed to develop general, mature tools, and
to deploy the syntax definitions in different industrial settings. Key to success was a sys-
tematic process, automation of grammar transformations, and parser testing based on a
prototype technology. This project is part of a series of similar recovery projects [van den
Brand et al. 1997; Sellink and Verhoef 2000a; van den Brand etal. 2000]. The recovered
syntax definition for Cobol is widely used by tool developersand researchers around the
world. This was the first freely available, high-quality syntax definition for Cobol in the
40 years of this language. (Even today, most business-critical code still resides in Cobol
portfolios [Arranga et al. 2000].) Industrial Cobol front-ends are always considered intel-
lectual property because the costs for their development and maintenance are considerable
and the involved technologies are proprietary.

5.2 Showcase: API-fication

This showcase is discussed in detail in [Jong and Olivier 2004]. Using elements of the
emerging engineering discipline for grammarware, membersof our team dramatically im-
proved the architecture of the ASF+SDF Meta-Environment [Klint 1993; van den Brand
et al. 2001]. This system supports generic language technology on the basis of executable
specifications for language-based, interactive tools. Thecurrent system is the result of
many person years of design, development and evolution. Thesystem is being used in
industrial applications dealing with software renovation, domain-specific application gen-
eration [van den Brand et al. 1996], and others. The architectural revision of the system
concerned the usage of the internal ATerm format [van den Brand et al. 2000] for generic
data representation. While infrastructures for generic language functionality normally re-
quire such a generic format, a consequence is that programmers are encouraged to encode
specific format knowledge of manipulated data in the code. This leads to heavily tangled
code. In the case of the C- and Java-based ASF+SDF Meta-Environment, knowledge of
several parse-tree formats and other specific formats was scattered all-over the ATerm-
based functionality in the system. The architectural revision of the system aimed at an
“API-fication”. We use this term to denote the process of replacing low-level APIs by
higher-level APIs. Here, an API is viewed as a set of C functions, Java methods, and that
alike. In the showcase, the low-level API supports processing of plain ATerms, while sev-
eral high-level APIs support data access for different parse-tree formats and others. The
high-level APIs were generated from grammars. The API-fication of the ASF+SDF Meta-
Environment led to an explicit representation of specific formats. Also, nearly half of the
manually written code was eliminated.

5.3 Promise: increased productivity

The recovery showcase suggests increased productivity as apromise of grammarware en-
gineering because other known figures for the development ofquality Cobol grammars are
in the range of two or three years [Lämmel and Verhoef 2001b;2001a]. We analyse the IT
value of this speedup in [Lämmel and Verhoef 2001a]. In essence, the ability to recover
grammars for the 500+ languagesin useenables the rapid production of quality tools for
automated software analysis and modification. Such tools make software re-/reverse engi-
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neering scalable in the view of software portfolios in the millions-of-lines-of-code range.
Currently, solution providers for legacy modernisation are not able to serve the full spec-
trum of languages and dialects; as noted by the Gartner Group[Gartner Research 2003].
Apparently, parser development and source-code modellingare very expensive in practise,
up to a degree that automated software analysis and modification becomes unaffordable.

Productivity gains are by no means restricted to grammar recovery. Generally, systematic
processes and automation in the grammarware life cycle increase productivity.

5.4 Promise: improved evolvability

The API-fication showcase made extra grammatical structureaccessible to static typing.
This is clearly beneficial for evolution because types make evolutionary adaptations of
grammarware more self-checking. In fact, the API-fication effort was triggered by the
need to change the parse-tree format, which was found to be too difficult to perform on the
original system with its implicit grammar knowledge.

Improved evolvability can also be expected from techniquesthatoperationalise linksbe-
tween scattered grammar knowledge. That is, if grammaticalstructure changes in the con-
text of one use case, then these changes can be propagated to other use cases. An example
of an operationalised link is the semi-automatic derivation of a tolerant parser from a more
strict grammar [Barnard 1981; Barnard and Holt 1982; Klusener and Lämmel 2003].

5.5 Promise: improved robustness

Static typingof grammarware improves its robustness because it rules outinconsistent
grammar patterns in code. That is, the type system of the usedspecification or program-
ming language is exploited to enforce adherence to a grammar. The API-fication showcase
illustrates that generic language technology can require special efforts. The aforemen-
tionedoperationalisation of linksbetween scattered grammar knowledge tackles robust-
ness as well: it makes sure that different components ’talk in the same language’, which
is clearly important for robust interoperability. Robustness of grammarware will also be
improved by effectivereuse. Unfortunately, we do not yet fully understand how to reuse
grammarware. Contemporary grammarware tends to be too monolithic, too technology-
dependent, and too application-specific for reuse. Finally, robustness of grammarware
will also be improved bygrammar-based testing. Most notably, differential testing and
stress testing can be supported by grammar-based test-datageneration using a stochas-
tic approach or even proper coverage criteria. Applications of grammar-based testing are
reported in [McKeeman 1998; Sirer and Bershad 1999; Veerman2005].

5.6 Promise: less patches, more enhancements

The promises of grammarware engineering can be compared with known benefits of mod-
ern development methodologies. In [Dekleva 1992], Deklevaaddressed the (as it turned
out unsubstantiated) assumption that the improved qualityof a system’s structure and other
improvements would reduce maintenance time. This was a shared misconception at that
time. Dekleva summarised:

“The survey findings do not support the proposition that the application of
modern information systems development methodology decreases maintenance
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time. However, some benefits are identified. Time spent on emergency error
correction, as well as the number of system failures, decreased significantly
with the application of modern methodology. Systems developed with modern
methodologies seem to facilitate making greater changes infunctionality as
the system changes.”

Likewise, we expect that patching work in grammarware maintenance will diminish, fail-
ures of grammarware are avoided by construction, so that more time is left for enhancing
grammarware, while enhancements do not harm robustness of the grammarware. In fact
this is the main motive for aiming at an engineering discipline for grammarware.

6. PRINCIPLES OF GRAMMARWARE ENGINEERING

We contend that an engineering discipline for grammarware is to be based on the principles
that follow. None of the principles should be surprising since they are all adopted from
contemporary common sense in software engineering. The point is that contemporary
grammarware development doesnot adhere to these principles, despite their advisability.
However, there exist several supportive samples of using these principles. We will provide
corresponding references in due course.

6.1 Principle: start from base-line grammars

When designing grammarware, too early commitment to a concrete use case, specific tech-
nology (meta-grammarware), and other implementational choices shall be avoided. To
this end, grammarware development shall depart from pure grammars: more or less plain
structural descriptions using a fundamental notation. Within the grammarware life cycle,
we use the termbase-line grammarto denote such grammars. Base-line grammars should
be sufficiently structured and annotated to be useful in the potential derivation of concrete
syntaxes, object models, and other typical forms of use-case specific grammars. If neces-
sary, base-line grammars can be complemented by assorted constraints and semantics for
the described structures. The constraints and the semantics shall be “universal”, i.e., they
must not be specific to a use case.

6.2 Principle: customise for grammar use cases

We derive new grammars and enriched structural specifications via customisation from
base-line grammars. Here are some existing techniques thatexercise this principle:

—In [Kadhim and Waite 1996; Wile 1997], approaches for the operationalisation of the
link between concrete and abstract syntax definition are described. That is, concrete
syntax definitions are customised into abstract syntax definitions.

—In [Aho et al. 1986; Lohmann et al. 2004], advanced transformations for the removal
of left-recursion in a context-free grammar are described.This sort of customisation is
a preparatory step when we want to commit to basic parsing technology for recursive
descent. The cited approaches are advanced in so far that transformation is not limited
to context-free grammars but the grammar transformation isalso lifted to the level of
attribute grammars. Here, we assume that the attribute grammars model parse-tree syn-
thesis. The approaches guarantee that the synthesised parse-trees donot change, even
though the underlying grammar does change.
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—Customisation is expected to be useful for converting puregrammars into parser spec-
ifications. Relevant idioms for parser specification exist in abundance. For instance,
there are idioms that address disambiguation: extra actions for semantics-directed pars-
ing [Parr and Quong 1994; Breuer and Bowen 1995], decorated tokens [Malloy et al.
2003], filters on parse-tree forests [Klint and Visser 1994;van den Brand et al. 2002].
These idioms tend to be coupled with specific technology. Also, one can not exercise
these idioms in an incremental fashion such that a given grammar could be adapted in
the context of a specific use case.

—A very limited form of grammar customisation is provided byGDK — the Grammar
Deployment Kit [Kort et al. 2002], which generates different parser specifications from
a general grammar notation. Some minor details of generation can be controlled via a
trivial command-line interface. Otherwise, GDK assumes that grammars are prepared
prior to export to the chosen parser technology — by means of grammar transformations.

The present-day approach to customisation is predominantly ad-hoc and manual. A gen-
eral view on automated grammar customisation could be basedon concepts of aspect-
oriented programming [Kiczales et al. 1997; Elrad et al. 2001] pending an adoption to
grammarware. That is, any customisation step could be viewed as the superimposition of
advice onto an existing grammar or grammar-dependent software component. This super-
imposition would be realised by grammarware transformations using a weaving semantics.
Furthermore, concepts of model-driven development [Mellor et al. 2003; Selic 2003], in
particular, model transformations [Sendall and Kozaczynski 2003] could provide a useful
organisation principle for customisation. That is, the base-line grammar in grammarware
engineering can be viewed as the platform-independent model (PIM) in model-driven ar-
chitecture (MDA [OMG 2004]), and each grammar use case, or each intermediate step can
be viewed as a platform-specific model (PSM).

6.3 Principle: separate concerns in grammarware

Separation of concerns in software (including grammarware) is supposed to facilitate reuse
and modular reasoning [Dijkstra 1976]. A given piece of grammarware indeed tends to deal
with several concerns. One can distinguish grammar concerns (i.e., modularisation of the
grammar as such), and grammar-based concerns (i.e., modularisation of functionality on
top of the grammar). For instance, in a typical re-/reverse engineering front-end, one can
find the following grammar concerns (which are unfortunately not separated in practise):

—Base syntax.

—Comments and layout (indentation).

—Preprocessing syntax.

—Error handling rules.

A re-engineering transformation could exhibit the following grammar-based concerns:

—The primary transformation.

—Preparatory or on-the-fly analyses.

—A helper concern for change logging.

—A helper concern for sanity checking.
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Some techniques for the separation of grammar concerns are described in [Purtilo and
Callahan 1989; Kadhim and Waite 1996; Malton et al. 2001; Cordy 2003]. Research on
modular attribute grammars has resulted in some techniquesfor the separation of grammar-
based concerns [Farrow et al. 1992; Kastens and Waite 1994; Lämmel 1999a; Lämmel and
Riedewald 1999; Lämmel 1999b; de Moor et al. 2000]. There are mixed techniques such
as origin tracking in term rewriting [van Deursen et al. 1993], and parse trees with ‘active’
annotations [Kort and Lämmel 2003b]. We contend these techniques need to be further
developed and marketed before they are widely adopted.

An effective separation of concerns in grammarware often requires advanced means of
modularisation. To give an example, let us consider pretty-printing program text. One
concern is to define a comprehensive set of pretty-print rules for all constructs. Another
potential concern is the preservation of preexisting formatting information [de Jonge 2002].
The challenge is that these concerns (or features) interactwith each other in a complicated,
so far insufficiently understood manner.

6.4 Principle: evolve grammarware by transformation

The present-day approach to grammarware evolution is predominantly ad-hoc and manual.
We propose that evolution of grammarware is operationalised via automated transforma-
tions. Since grammars permeate grammar-dependent software, any grammar change has
a strong impact. Hence, the evolution of grammatical structure must be effectively trans-
posed to the level of grammar-dependent software components. That is, any grammar
transformation has to be completed by a transformation of all grammar-dependent func-
tionality. Likewise, any grammatically structured data issubject to a data transformation
in case the type-providing grammar has been changed. Consequently, we face transforma-
tions at three levels:

—Grammar transformations.
—Software transformations for grammar-dependent software.
—Data transformations for grammatically structure data.

Evolution must also handle the issue of grammar variations that reside in different software
components. The related grammars either evolve jointly, orthe evolution of one grammar
(use case) must be hidden from the other grammar (use case) bymeans of a “grammar
bridge”, i.e., a grammar-based conversion component.

In Fig. 5, we instantiate the different levels of grammarware evolution for XML:

Grammarware XML
Grammar XML schema (or DTD)
Grammar-dependent programXML document processor (e.g., XSLT)
Grammatically structured dataXML data (XML stream / document)

The middle layer in the figure represents an XML-schema transformation. The top and the
bottom layers complete the primary schema transformation to be meaningful for dependent
document-processing functionality and corresponding XMLstreams.

The derivation of a data transformation from a schema transformation is relatively well
understood in the context of databases; cf. database schemamappings coupled with an
instance mapping [Hainaut et al. 1993; Henrad et al. 2002; Gogolla and Lindow 2003].
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Transformation

XML dataXML data
Transformation

Input Output

doc. processor doc. processor

Transformation
XML schema XML schema

Fig. 5. Multi-level transformations in the XML setting:The primary transformation is defined at the XML
schema level, while the transformations at the document-processing level (e.g., XSLT) and the XML-stream level
are supposed to be implied.

Some similar work has been reported on XML grammars [Lämmeland Lohmann 2001;
IBM Research 2002]. More generally, we view pairs of transformations on schema and
data as an important instance of the notion of “coupled transformation” [Lämmel 2004a].

The derivation of a program transformation from a schema transformation is weakly un-
derstood both in the XML context and the database context. However, object-oriented pro-
gram refactoring [Griswold and Notkin 1993; Opdyke 1992] instantiates this sort of cou-
pling, where class structures can be refactored and all dependent method implementations
are “automatically” updated. Clearly, evolutionary transformations can go beyond mere
refactoring. In [Kort and Lämmel 2003a], we consider coupled transformations for types
and functions in a functional program, while we even go beyond refactoring. Some forms
of model transformations [Sendall and Kozaczynski 2003] (in the sense of the emerging
field of model-driven development) might be applicable in the grammarware context.

Evolution comprises refactoring, enhancement, as well as clean-up. In the broader sense,
evolution also comprises re-targeting grammarware from one technology to another. Ba-
sic grammar transformations for refactoring, enhancement, and clean-up were developed
in [Lämmel 2001a]. Evolutionary transformations of software have generally not yet re-
ceived much attention, except for the refactoring mode of evolution. The situation is not
different for grammarware, but some initial ideas are summarised in [Lämmel 1999b;
2004b], where rule-based programs are transformed in a number of ways, including some
grammar-biased modifications, some of them going beyond refactoring.

6.5 Principle: reverse-engineer legacy grammarware

We can not assume that suitable base-line grammars are readily available for all legacy
grammarware. However, it is fair to assume that there is someencoded grammar knowl-
edge available, from which base-line grammars can be recovered by means of reverse en-
gineering. The grammar knowledge can reside in data, e.g., one can infer an XML schema
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from given XML documents. The grammar knowledge can also reside in source code
or in a semi-structured document, e.g., in a hand-crafted recursive-descent parser or in a
semi-formal reference manual. The latter scenario was discussed in detail in Sec. 5.1.

The recovery of base-line grammars is an issue for grammars in a broad sense, not just for
syntax definitions of widely used programming languages. Itis a common maintenance
scenario to recover grammars for DSLs and (data-access) APIs. Typical triggers for such
recovery efforts are the following:

—A proprietary language or API must be replaced.

—New grammar-based tools have to be developed.

—The language or API at hand must be documented.

Here are two specific examples that illustrate the link between recovery and enabled for-
ward engineering. In [Sellink and Verhoef 2000a; van den Brand et al. 2000], we describe
a project related to the proprietary language PLEX used at Ericsson. The project delivered
a recovered PLEX grammar, a documentation of PLEX, and a new parser for PLEX. In [de
Jonge and Monajemi 2001], a project is described that relates to the proprietary SDL di-
alect used at Lucent Technologies. The project delivered a recovered SDL grammar, and a
number of SDL tools, e.g., a graph generator for finite state machines.

6.6 Principle: ensure quality of grammarware

We need quality notions or metrics in the first place. We need automated metrics calcula-
tion in the second place. We need effective (computable) techniques to assess quality of
grammarware and to steer the improvement of quality. This development has to distinguish
grammars vs. grammar-dependent software. As far as grammars are concerned, we need
to identify grammar metrics, grammar styles, and notions ofcorrectness and complete-
ness. Quality attributes of grammar-dependent software shall be these: correctness in the
sense of differential testing, conformance in the sense of conformance testing, performance
attributes, complexity metrics, type validation, and others.

Some grammar metrics have been defined and used in [Sellink and Verhoef 2000a] in the
context of assessing the code quality and the status of grammars during grammar reverse
engineering. Specific notions of relative grammar correctness and completeness were de-
fined in [Lämmel 2001b] with the goal of aligning a grammar toa proprietary (i.e., black
box) reference parser.

Techniques for quality assessment and improvement for grammar-dependentsoftware might
explicitly involve the grammatical structure at hand, in which case we call these tech-
niquesgrammar-based. For instance, grammar-based testing of grammar-dependent soft-
ware would be based on test-data sets that cover the underlying grammar [Purdom 1972;
Lämmel and Harm 2001]. Grammar-based testing can be partially automated by grammar-
based test-data generation; see [Burgess 1994; McKeeman 1998] for compiler testing,
and [Maurer 1990; Sirer and Bershad 1999] for other settings. Clearly, validation of a
grammar-dependent software component is not necessarily grammar-based. For instance,
validation by means of manually developed conformance suites [NIST 2003; Malloy et al.
2002] might focus on I/O behaviour rather than grammatical structure.
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Fig. 6. The grammarware life cycle:Base-line grammars do not commit to a technology or a use case. The stack
in the middle lists some grammar use cases, which are derivedby customisation. Both base-line grammars and
grammar use cases can be subject to different sorts of evolution, while evolution of base-line grammars should
be preferred over evolution of grammar use cases, whenever possible. Grammar use cases can be implemented
by meta-grammarware or by grammar-based programming techniques. The grammar life cycle is enabled by
grammar recovery, which recovers base-line grammars from implementations or others, if necessary.

6.7 The grammarware life cycle

The discussed principles can be integrated in a grammarwarelife cycle; see Fig. 6. By
having a proper grammarware life-cycle we can invigorate the normal software life-cycle.
Most notably, the distinction of base-line grammars vs. grammar use cases allows us to
apply evolutionary transformations to the former such thatthe adaptations of the latter
are mostly implied. That is, grammar use cases are supposed to co-evolve with base-line
grammars. There are clearly evolution scenarios that are inherently technology- and use-
case-specific, in which case evolutionary transformationsmust be carried out on grammar
use cases.

To align the grammarware life cycle with the normal softwarelife cycle, we will briefly
go through Fig. 6. We will focus onforward engineering— knowing that we will neglect
some trips through the figure. There are the following phases:

—Provision of base-line grammars.
—Customisation to derive grammar use cases.
—Implementation to obtain actual grammar-dependent software.
—(Potentially grammar-based) testing of the grammar-dependent software.

Here is one scenario for forward engineering from Fig. 6: going from a base-line grammar
to an object-orientedvisitor frameworkthrough acustomised class hierarchy. The deriva-
tion of the use case requires a class dictionary. (Hence, either the base-line grammar must



P. Klint and R. Lämmel and C. Verhoef · 31

be a class dictionary, or it must be amenable to a mapping thatdelivers a class dictionary.)
For the sake of an interesting (and realistic) customisation requirement, we assume that the
final object structures are supposed to carry extra links foruse/def relations. To this end,
the customisation has to enhance the class hierarchy accordingly, when compared to the
base-line grammar. The enhanced class hierarchy can now be “‘implemented” by generat-
ing a visitor framework for traversing object structures, as it is pursued in [Visser 2001b]
and elsewhere. Ultimately, we obtained a component of grammar-dependent software: a
compiled and packaged visitor framework.

6.8 Automated grammar transformations

Several principles of grammarware engineering can be supported through transforma-
tions, which are to be automated for reasons of traceabilityand scalability. We will
now focus on grammar transformations, assuming that they can also steer the provision
of grammar-aware transformations of grammar-dependent software. Grammarware engi-
neering employs grammar transformations in the sense of ameta-programming technique.
A grammarware engineer “codes” grammar transformations toexpress intents of evolu-
tion, customisation, and recovery. (This view differs fromcompiler construction [Aho
et al. 1986], where grammar transformations are executed byparser generators and other
tools in a black-box fashion.) Grammar transformations canbe recorded in scripts. One
can envisage interactive tool support for grammar transformation.

Let us consider some examples. We will illustrate recovery transformations for a syn-
tax definition of Cobol. The reported examples were encountered in the aforementioned
recovery project [Lämmel and Verhoef 2001b] for a Cobol grammar. According to the
industrial standard for VS Cobol II [IBM Corporation 1993],anADD statement can be of
the following form (in EBNF notation):

add-statement =
"ADD" (identifier|literal)+ "TO" (identifier "ROUNDED"?)+
("ON"? "SIZE" "ERROR" imperative-statement)?
("NOT" "ON"? "SIZE" "ERROR" imperative-statement)?
"END-ADD"?

// two other forms of ADD statements omitted

This production is actually incomplete in terms of the intended syntax.
We quote an informal rule from IBM’s VS Cobol II reference [IBM Corporation 1993]:

A series of imperative statements can be specified
whenever an imperative statement is allowed.

To implement this rule, we can apply a transformation operator generalise as follows:

generalise imperative-statement
to imperative-statement+

The transformation replaces the occurrences of the nonterminalimperative-statement
by the EBNF phraseimperative-statement+, as suggested by the informal rule. We
call this a generalisation because the resulting grammar ismore general than the original
one — in the formal sense of the generated language. Here is the result:

add-statement =
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"ADD" (identifier|literal)+ "TO" (identifier "ROUNDED"?)+
("ON"? "SIZE" "ERROR" imperative-statement+)?
("NOT" "ON"? "SIZE" "ERROR" imperative-statement+)?
"END-ADD"?

We will also illustrate transformations for grammar refactoring. TheON-SIZE-ERROR
andNOT-ON-SIZE-ERROR phrases occur in other forms ofADD-statements and many
other Cobol statements again and again. So we single out these phrases by extraction,
which will lead to a more concise grammar. We apply the following transformations:

extract "ON"? "SIZE" "ERROR" imperative-statement+
as on-size-error-phrase

extract "NOT" on-size-error-phrase
as not-on-size-error-phrase

That is, we extract some parts of the productions forADD-statements (and others) such
that they constitute new nonterminalson-size-error andnot-on-size-error.
Consequently, the modified production looks as follows:

add-statement =
"ADD" ( identifier | literal )+ "TO" ( identifier "ROUNDED"? )+
on-size-error? not-on-size-error?
"END-ADD"?

Generally, one can classify grammar transformations in terms of usage scenarios (and the
assorted preservation properties). We have seen examples of generalisation and extraction.
Here is a more profound list of scenarios:

—Refactoring: a grammar is improved to become more concise, more readable, better
amenable to subsequent changes. Refactoring can be used during evolution, customisa-
tion, and recovery. Extraction (see above) is a form of refactoring.

—Style conversion: a grammar of a certain normal form (“style”) is derived. Forinstance,
regular operators can be eliminated in an EBNF to arrive at a pure BNF. (Style con-
versions preserve the generated language, just as refactoring does. Style conversion is a
global, systematic operation, while refactoring is normally a more specific, programmer-
initiated operation.)

—Generalisation: productions are added or regular expressions are generalised in the
sense of extending the generated language. Generalisationis particularly meaningful
during grammar evolution and grammar recovery.

—Restriction: the opposite of generalisation.

—Insertion: rules are enhanced by inserting extra sub-phrases. For instance, a base-line
grammar could be customised as a parse tree format such that inserted sub-phrases cater
for position information or comments and layout.

—Deletion: the opposite of insertion.

—Amalgamation: two ore more rules are merged into a single rule. (This sort of trans-
formation can be viewed as a generalising transformation followed by the elimination
of doubles in the rule set.) Amalgamation caters for simplified, problem-specific gram-
mars. A good example of amalgamation can be found in the work on agile parsing [Dean
et al. 2002; 2003].
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—Separation: the opposite of amalgamation.

—Transformations supporting grammar properties, e.g., conflict resolution for LALR(1),
or disambiguation for generalised LR parsing. Eventually,many of these transforma-
tions cannot be described on pure grammars alone, but they rather involve commitment
to a richer grammar notation or even to a specific technology (at least, as of today).

A number of systems for language processing have been meanwhile used to support cer-
tain forms of automated grammar transformations (in the sense of grammarware engineer-
ing); we know of uses of ASF+SDF Meta-Environment, LDL, Popart, Strafunski, Stratego,
TXL — as discussed in [Lämmel and Wachsmuth 2001; Lämmel and Verhoef 2001b; Wile
1997; Lämmel and Visser 2003; de Jonge et al. 2001; Dean et al. 2002].

7. A LIST OF RESEARCH CHALLENGES

We have encountered various techniques throughout the agenda, which are indeed very ver-
satile, and which substantiate that we are facing the emergence of an engineering discipline
for grammarware. We contend that a proper research effort isneeded to study foundations
in a systematic manner, and to deliver best practises with a high degree of automation and
generality. The required effort should not be underestimated. To give an example, so far,
there is no reasonably universal operator suite for grammartransformations despite all re-
ported efforts. Presumably, the toughest challenge is to provide faithful coverage for the
many different usage scenarios for these transformations,and to be meaningful to most
if not all grammar notations and grammar-based programmingsetups. This large scale
makes us think of a public research agenda as opposed to a short-term project.

The following list entails research issues on foundations,methodology, best practises, tool
support and empirical matters. Each item is self-contained, and could serve as a skeleton
of a PhD project (except the last one:miscellaneous).

7.1 An interoperational web of grammar forms

We have enumerated many different grammar notations. In practise, there exist all kinds of
more or less ad-hoc mappings between these notations. For instance, regular operators can
be transformed away such that pure BNF notation is sufficient. Also, context-free gram-
mars can be refactored such that the productions correspondimmediately to abstract and
concrete classes in an object-oriented inheritance hierarchy. Ultimately, we need a compre-
hensive grammar web, where the side conditions and implications of mapping one notation
to the other are described in an operational and pragmatic manner — with reference to de-
tails of grammar use cases. Some relevant results can be found in [Koskimies 1991; van
der Meulen 1994; de Jonge and Visser 2000; Kort et al. 2002; McLaughlin 2002; Jong and
Olivier 2004; Hinze et al. 2004; Herranz and Nogueira 2005].There exist various theoret-
ical expressiveness results about different grammar forms. These results are relevant and
should be exploited, but they must not be confused with practically meaningful mappings
between the grammar notations.

7.2 A collection of grammarware properties

What is the complexity of a grammar? What is the grammar-related complexity of grammar-
dependent functionality? What are effective notions of grammar equivalence and friends?
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What is the distance between two grammars? What are preservation properties, as they
can be used to discipline grammar transformations? What is agrammar slice? What is a
grammar module? What is the grammar contract that is relied upon in grammar-dependent
functionality? What are typical analyses to be performed ongrammars? And so on. We
presume that the development of a comprehensive framework for grammarware proper-
ties can be based on existing work for grammar-flow analysis [Mönck and Wilhelm 1991;
Jeuring and Swierstra 1994].

7.3 A framework for grammar transformations

What are suitable primitives? What are the composition principles? What are pre- and
post-conditions? How to infer transformations from given grammars? What classes of
transformations do exist? How do transformations apply across grammar notation? How
to reuse such pure grammar transformations in the context ofcustomisation for grammar
use cases? How to support data and grammar integration by grammar transformations?
And so on. One should aim at an operator suite that covers the various transformation
scenarios including refactoring, disambiguation, normalisation, enhancement and clean-
up. The final deliverable can be a domain-specific language for grammar transformation,
which is simple to use, and which comes with a dedicated theory for formal reasoning
about grammar transformations. Ideally, the transformation language should lend itself to
interactive tool support for transformation. Relevant results can be found in [Wile 1997;
Pepper 1999; Bernstein and Rahm 2001; Lämmel and Verhoef 2001b; Lämmel 2001a;
Lämmel and Wachsmuth 2001; Dean et al. 2002; Erwig 2003].

7.4 Co-evolution of grammar-dependent software

We recall the archetypal example from Sec. 6.4: the co-evolution of an XSLT program in
reply to a change of the underlying XML schema. Another example is the co-evolution of
a customisation concern for parser tweaking or parse-tree construction in reply to a change
of the underlying syntax. There exists related worked on thesubject of the joint trans-
formation of grammars and dependent declarative (rule-based) programs [Lämmel 1999b;
Lämmel and Riedewald 1999; Lämmel 1999a; Lohmann and Riedewald 2003; Kort and
Lämmel 2003a; Lohmann et al. 2004; Lämmel 2004b]. We adoptthe term co-evolution
from [D’Hondt et al. 2000; Wuyts 2001; Favre 2003], where it was specifically used in the
context of joint adaptation of object-oriented designs andimplementations. We propose
that co-evolution of grammar-dependent software should beapproached in a language-
parametric manner — as far as the programming language for grammar-dependent func-
tionality is concerned. This sort of genericity is described, to some extent, in [Lämmel
2002; Heering and Lämmel 2004].

7.5 Comprehensive grammarware testing

What are grammar-based coverage criteria? What are means tocharacterise problem-
specific test cases? What techniques are needed to analyse coverage and to generate
test data? There exist few coverage criteria for grammars: Purdom’s rule coverage [Pur-
dom 1972] for context-free grammars, and refinements thereof [Lämmel and Harm 2001;
Lämmel 2001b]. Test-data generation necessitates a string of techniques:

—to deal with the standard oracle problem,
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—to minimise test cases that act as symptoms,

—to enforce non-structural constraints,

—to accomplish negative test cases, and

—to achieve scalability for automated testing.

Specific results regarding some of these issues can be found in [Purdom 1972; Celentano
et al. 1980; Kastens 1980; Maurer 1990; Burgess 1994; McKeeman 1998; Sirer and Ber-
shad 1999; Harm and Lämmel 2000].

7.6 Parsing technology revisited

Even basic parsing regimes are still subject to ongoing research and defence. What is
the ultimate regime? Is it generalised LR-parsing with powerful forms of disambigua-
tion [Klint and Visser 1994; van den Brand et al. 2002]; is it top-down parsing but with
idioms for semantics direction [Parr and Quong 1994; Breuerand Bowen 1995]; it is simple
LALR(1) parsing with token decoration [Malloy et al. 2003];is it plain recursive descent
parsing with provisions for limiting backtracking [Breuerand Bowen 1995; Kort et al.
2002]? Perhaps, there is no ultimate regime. So then, when touse what regime? How to
migrate from one regime to the other? Analysing the engineering aspects of different pars-
ing technologies, and allowing programmers to detach themselves, to some extent, from
specific technology is the perfect showcase for grammarwareengineering. This showcase
really requires best practises and corresponding tool support. Engineering aspects of parser
development are largely neglected in the literature, but werefer to [Crawford 1982] for a
small but good example, where some engineering guidelines for the construction of LALR
grammars are provided.

7.7 Grammar-aware API migration

Consider the following archetypal example. Given is an object-oriented program that ac-
cess XML data through the simple (generic) Document Object Model (DOM [W3C 2003]).
Let us assume that the accessed data is required to always validate against some given XML
schema. In that case, static typing of the program could be improved by making use of an
XML data binding technology (such as JAXB [Sun Microsystems2001] in the case of
the Java platform). That is, XML access will be based on classes that are generated from
the XML schema. The challenge is that API migration is weaklyunderstood in terms of
the required code transformations. More generally, the question is: what grammar-based
methods can be provided for the support of API migration (potentially also including APIs
other than obvious data-access APIs)?

7.8 Modular grammarware development

What advanced means of modular composition can improve reuse of grammars, grammar
slices, other grammar fragments, and grammar-dependent functionality? What are generic
aspects for grammar-dependent functionality, and what arethe means to instantiate them?
Modular or even aspect-oriented programming [Kiczales et al. 1997; Elrad et al. 2001]
should be fully instantiated for grammarware. Relevant results can be found in [Farrow
et al. 1992; van Deursen et al. 1993; Kastens and Waite 1994; Lämmel 1999b; 1999a; de
Moor et al. 2000; Malton et al. 2001; Swierstra 2001; Winter 2003; Cordy 2003; Kort and
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Lämmel 2003b]. An archetypal scenario is parser development. Achieving an effective
modularisation of all the concerns in the following list — ontop of mainstream parsing
technologies — would be a major step forward in the parsing arena:

—Concrete syntax.

—Abstract syntax.

—Lexical syntax.

—Pre-processing syntax.

—Parse-error recovery.

—Parse-tree construction.

—Semantics-directed parsing.

—Computations for attributed parse-trees.

—Annotation of parse trees with position information.

7.9 Grammarware debugging

It is common practise to debug grammarware just in the same way as any other soft-
ware — i.e., without actual grammar-awareness. This is not necessarily appropriate. For
instance, consider grammar-based programming using visitor techniques in object-oriented
programming. Stepping through code for tree walking, one islikely to inspect code that is
not related to the problem-specific parts of the traversal. Grammar-aware breakpoints with
assorted use-case-specific debug information are needed. There exists related work on vi-
sualising the inner workings of compilers [Schmitz 1992], and on debugging models for
generic language technology [Olivier 2000]. In addition todebugging grammar-dependent
software, there is also a need for debugging grammars, by themselves. For instance, con-
sider the desirable property of a grammar to be unambiguous.While the property is gen-
erally undecidable, one can perhaps use static analyses, such as LR(k) conflict analysis for
smallerks, as to obtain indications of sources of ambiguity.

7.10 Adaptive grammarware

In some grammarware development projects, the use of entirely precise grammars is not
necessarily the preferred option — from an engineering point of view. Less precise gram-
mars, and more adaptive grammarware might be preferable or even mandatory. For in-
stance, a precise grammar might simply not exist for the use case at hand — as in the case
of processing interactive input with transient syntax errors. Even in case a precise gram-
mar is obtainablein principle, precision might still be too expensive. Also, over-precision
can pose a barrier for evolution of grammarware and for unanticipated variations on gram-
matical structure. Examples of adaptive techniques are known in parsing [Barnard 1981;
Barnard and Holt 1982; Koppler 1997; Moonen 2001; Klusener and Lämmel 2003; Synyt-
skyy et al. 2003]. Clearly, adaptiveness triggers additional concerns such as correctness,
as we discuss for parsing in [Klusener and Lämmel 2003]. There is a need for a general
methodology for adaptive grammarware.
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7.11 Grammar inference put to work

Grammar recovery is an essential phase in the grammarware life cycle. One option for re-
covery is to extract available traces of grammatical structure, and to issue transformations
that lead to a useful grammar [Lämmel and Verhoef 2001b]. Analternative form of gram-
mar recovery can be based on grammar inference. While there is a considerable body of
theoretical results on grammar inference of context-free grammars (and other grammars)
from data [Mäkinen 1992; Koshiba et al. 2000], there is little experience with applying
grammar inference to non-trivial software engineering problems. In particular, known
efforts to infer grammars for use in programming-language parsers are quite limited in
scale; see, e.g., [Mernik et al. 2003; Javed et al. 2004; Dubey et al. 2005]. For instance,
in [Mernik et al. 2003], the syntax of a small domain-specificlanguage is inferred using
an evolutionary approach, namely genetic programming. We have not yet seen work that
clearly motivates grammar inference from an engineering point of view. How to make sure
that the grammar will be meaningful to the grammarware engineer? How to make infer-
ence predictable such that similar results are obtained forslightly different inputs? How
to take into account informal knowledge about the grammar? How to test the grammar as
inference proceeds?

7.12 Reconciliation for meta-grammarware

Consider the following archetypal example, which deals with the evolution of a domain-
specific language (DSL [van Deursen et al. 2000]). We assume that the DSL is imple-
mented by the generation of low-level code from high-level DSL code. We assume that the
developer can readily customise the generated code, whenever necessary. The evolution
of the DSL or alterations of the generator tool make it likelythat code has to be regener-
ated, which poses the following challenge. The newly generated code has to be reconciled
with previously customised code. Considering (software) models rather than grammars (or
grammarware), such reconciliation issues relate toround-trip engineeringin model-driven
development [Mellor et al. 2003; Selic 2003]. In that case, aplatform-independent model
(PIM) is transformed into a platform-specific model (PSM) and eventually into code. Any
customisation of PSM (or code) would need to be pushed back tothe PIM.

7.13 Grammarware life cycling

Processes for typical life-cycle scenarios of recovery, evolution, and customisation need to
be defined in detail. This development shall differentiate various grammar notations and
grammar use cases. For instance, there will be variations ofprocesses that are specific
to document processors vs. language processors. The definedprocesses are supposed to
highlight the potential for automated transformation, quality assessment, and choice points
for technology options. This development will eventually add up to a collection of meth-
ods, best practises and comprehensive processes that can form the core of an engineering
handbook for grammarware.

7.14 Comprehensive grammarware tooling

The future grammarware engineer shall be provided with an environment forComputer-
Aided Grammarware Engineering(CAGE) — akin to the classic term CASE (Computer-
Aided Software Engineering). A CAGE environment should cover interactive and batch-
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mode grammar transformations, co-evolution of grammar-dependent programs, test-set
generation, coverage visualisation, calculation of grammar metrics, indication of bad smells,
customisation of grammars, and others. CAGE tooling needs to be made available in in-
tegrated development environments such as Eclipse or Visual Studio. Given the recent
surge of model-driven development (MDD), one might add CAGEtooling to MDD envi-
ronments. For instance, tool support for technology-specific customisation of grammars
(as in the parsing context) could be provided as transformation cartridges in the sense of
model-driven architecture [OMG 2004].

7.15 Miscellaneous

What are measurable losses caused by grammarware hacking? What are success stories,
and what are key factors for success? What is the mid- and long-term perspective for the
distribution of different kinds of grammarware? What do organisations know about their
grammarware assets? How to enable the creation of such knowledge [Klint and Verhoef
2002]? What are further insights in the grammarware dilemma, and how does this compare
to other dilemmas in software engineering? What lessons canbe learnt from unsuccessful
adoption of grammarware technology? (As a reviewer phrasedit: “lex andyacc are the
only tools the world out there has understood; the rest was ignored. Why?”.)

8. SUMMARY

We argued that current software engineering practises are insufficiently aware of gram-
mars, which is manifested by an ad-hoc and manual treatment of both — grammars as
such and grammatical structure as it occurs in software components. We compiled an
agenda that is meant to stimulate research on the engineering aspects of grammarware. We
identified promises and principles of the engineering discipline for grammarware.

The promises are increased productivity of grammarware development, improved evolv-
ability and improved robustness of grammarware. The principles are akin to state-of-the-
art software engineering. For instance, the principle “implement by customisation” cor-
responds to a grammarware-tailored instance of model-driven development [Mellor et al.
2003; OMG 2004]; the principle “separate concerns” requires advanced means of modu-
larisation, just as in aspect-oriented programming [Kiczales et al. 1997; Elrad et al. 2001];
the principles “evolve by transformation” and “ensure quality” is well in line with agile
methodologies as they are becoming common in today’s software engineering.

We called for a major research effort, which is justified by the pervasiveness of grammars in
software systems and development processes. We provided a substantial list of challenges,
which can be viewed as skeletons for PhD projects. Such challenges need to be addressed
in order to make progress with the emerging discipline for grammarware engineering.
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P. Klint and R. Lämmel and C. Verhoef · 43

JAVED , F., BRYANT, B., CREPINEK, M., MERNIK, M., AND SPRAGUE, A. 2004. Context-free grammar in-
duction using genetic programming. InACM-SE 42: Proceedings of the 42nd Annual Southeast Regional
Conference. ACM Press, 404–405.

JEURING, J.AND SWIERSTRA, D. 1994. Bottom-up grammar analysis—A functional formulation. In Proceed-
ings, European Symposium on Programming Languages and Systems (ESOP’94), D. Sannella, Ed. LNCS, vol.
788. Springer-Verlag, 317–332.

JOHNSON, S. 1975. YACC - Yet Another Compiler-Compiler. Tech. Rep. Computer Science No. 32, Bell
Laboratories, Murray Hill, New Jersey.

JONES, N., GOMARD, C., AND SESTOFT, P. 1993. Partial Evaluation and Automatic Program Generation.
Prentice Hall.

JONG, H. AND OLIVIER , P. A. 2004. Generation of abstract programming interfacesfrom syntax definitions.J.
Log. Algebr. Program. 59,1-2, 35–61.

DE JONGE, M. 2002. Pretty-printing for software reengineering. InProceedings, International Conference on
Software Maintenance (ICSM’02). IEEE Computer Society Press, 550–559.

DE JONGE, M. AND MONAJEMI, R. 2001. Cost-effective maintenance tools for proprietary languages. In
Proceedings, International Conference on Software Maintenance (ICSM’01). IEEE Computer Society Press,
240–249.

DE JONGE, M., V ISSER, E., AND V ISSER, J. 2001. XT: a bundle of program transformation tools. InPro-
ceedings, Workshop on Language Descriptions, Tools and Applications (LDTA’01), M. van den Brand and
D. Parigot, Eds. ENTCS, vol. 44. Elsevier Science Publishers.

DE JONGE, M. AND V ISSER, J. 2000. Grammars as Contracts. InProceedings, Generative and Component-
based Software Engineering (GCSE’00). LNCS, vol. 2177. Springer-Verlag, Erfurt, Germany, 85–99.

KADHIM , B. AND WAITE , W. 1996. Maptool—supporting modular syntax development.In Proceedings,
Compiler Construction (CC’96), T. Gyimothy, Ed. LNCS, vol. 1060. Springer, 268–280.

KASTENS, U. 1980. Studie zur Erzeugung von Testprogrammen fürÜbersetzer. Bericht 12/80, Institut für
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KLUSENER, S., LÄMMEL , R., AND VERHOEF, C. 2005. Architectural Modifications to Deployed Software.
Science of Computer Programming 54, 143–211.

KNUTH, D. 1968. Semantics of context-free languages.Math. Syst. Theory 2, 127–145. Corrections in 5:95-96,
1971.

KOPPLER, R. 1997. A systematic approach to fuzzy parsing.Software Practice and Experience 27,6, 637–649.
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L ÄMMEL , R. 2001a. Grammar Adaptation. InProceedings, Formal Methods Europe (FME) 2001, J. Oliveira
and P. Zave, Eds. LNCS, vol. 2021. Springer-Verlag, 550–570.
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