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1. INTRODUCTION

1.1 An analogy: linguistics vs. information technology

In linguistics, one must confront and manage a multitudeuofiéan languages. The overall
attack to deal with such diversity and complexity is to trydarstanding “the system of
principles, conditions, and rules that are elements or gntags of all human languages
... the essence of human languag@€homsky 1975]. (This is Chomsky’s controversial
definition of the “universal grammar”.) Such research cdrbeseparated from sociol-
ogy, and other human sciences. Similarly, in informatiaht®logy, we are faced with
a multitude of programming languages, data represengtpotocols, and other entities
that are regulated by some sort of grammar. Here, the owatatlk must be to understand
the principles, conditions, and rules that underly all usges for grammars. Grammars
cannot be reduced to a few formal aspects such as the Choneskydny and parsing al-
gorithms. We rather need a kind of software engineeringisrggmmar-awareoy paying
full attention to the engineering aspects of grammars aachgrar-dependent software.

1.2 The definition of the term grammarware
We coin the term ‘grammarware’ to comprise grammars and grardependent software.

—The termgrammaris used in the sense of all established grammar formalischgiam-
mar notations including context-free grammars, clasdatieries, XML schemas as
well as some forms of tree and graph grammars. Grammars edgasnumerous pur-
poses, e.g., for the definition of concrete or abstract rogning language syntax, and
for the definition of exchange formats in component-baségvaoe applications.

—The termgrammar-dependent softwai® meant to refer to all software that involves
grammar knowledge in an essential manner. Archetypal ebeopgrammar-dependent
software are parsers, program converters, and XML docuprengessors. All such soft-
ware eithelliterally involvesor encodes grammatical structureompare generated vs.
hand-crafted parsers.

1.3 A research agenda for grammarware engineering

This paper is a call-to-arms for setting the employment ahgnars in software systems
on a firm engineering foundation. In fact, this paper is aasdeagenda that promotes an
engineering discipline for grammarware. We use the terrarfgnarware engineering” to
denote this discipline.

Grammarware engineering is focused on the following credo:

The development and maintenance of grammarware shoulddbetlat the
involved grammatical structure is subjected to best pssj tool support and
rigorous methods that in turn are based on grammar-awareepis and tech-
niques for design, customisation, implementation, tgstiebugging, version-
ing and transformation.

The underlying goal is to improve the quality of grammarwaed to increase the pro-
ductivity of grammarware development. Grammars permeaitehape) software systems.
Hence, we deserve an engineering discipline for grammarveard we can expect that
grammarware engineering is to the advantage of softwarelalewment in general.
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1.4 Scenarios of grammarware development

Let us consider a few diverse scenarios of software devedoprin which different sorts
of grammar knowledge play an essential role. These scengirigpoint some issues and
problems regarding the development and maintenance ofrgeaware:

—As a developer of Commercial Off-The-Shelf software, yoanwto import user pro-
files in order to promote the user’s transition from an old toesv version, or from a
competing product to your’s; think of web browsers. Suchamfunctionality requires
recovery of the relevant format. Import needs to be robudtaataptive so that all con-
ceivable inputs are parsed and all convertible parts ardifobsl.

—As a developer of database applications, you want to adoptwescreen definition lan-
guage for an information system. An automated solutionireguhe ability to parse
screen definitions according to the old format, to generereesn definitions according
to the new format, and to define a mapping from the old to thefoewat. Here we pre-
sume that screen definitions are not ingrained in programe.c@dherwise, additional,
perhaps more involved parsing, unparsing, and mappingitmadity will be required.

—As an object-oriented developer, you want to improve stigfping for XML process-
ing. That is, you want to replace DOM-based XML access by arlLdhding. An
automated solution requires the ability to locate DOM ugaajterns in the code, and
to replace them according to the XML binding semantics. e fgrammar knowledge
of at least two kinds: the syntax of the programming languagehich XML access is
encoded, and the schema for the accessed XML data.

—As a tool provider for software re-/reverse engineerirgg gre maintaining a Java code
smell detector and a metrics analyser. You have starteetius in 1996 for Java 1.0,
while you are currently working on an upgrade for Java 1.5sUjport more sophisti-
cated smells and metrics, you add intelligence that resegrand handles various APIs
and middleware platforms used in Java applications, ewgndgs WebSphere and JBoss.
This intelligence boils down to diverse grammar knowledge.

—As a developer of an in-house application generator, yoe égredesign of the domain-
specific language (DSL) that is used to provide input to theegator. You fail to provide
backward compatibility, but you are requested to offer aveosion tool for existing DSL
programs. Furthermore, you are required to handle the @nobF generator output that
was manually customised by the programmers. Hence, youtmagd to locate and
reuse customisation code as it is ingrained in the genecaigel

—As a developer of an international standard or vendorifipeeference for a program-
ming language, you would like to guarantee that the languafgence contains the
complete and correct grammar of the described languagetetdhe shown sample
programs are in accordance with the described syntax (ro@digions). One challenge
is here that you need a readable syntax description in thelatd or reference as well
as an executable syntax definition for validation.

—As an online service provider, you want to meet your clier@guest to serve new XML-
based protocols for system use. For example, you want tace@n ad-hoc, CGI-
based protocol by instant messaging via Jabber/XMPP, wbilewant to preserve the
conceptual protocol as is. You end up with re-engineering wapplication such that the
alternation of the protocol technology will be easier in fhtire.
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1.5 Typical engineering aspects of grammarware
The aforementioned scenarios involve various engineespgcts regarding grammars:

—What is a “good grammar” in the first place — in terms of styler@trics?

—How to recover the relevant grammars in case they are ndilyesvailable?
—How to choose among options for implementing grammar-deest functionality?
—How to systematically transform grammatical structurewfaced with evolution?
—How to maintain links between implemented variations @ghme grammar?
—How to test grammar-dependent functionality in a gramenvaare manner?
—How to verify grammar-related properties of grammar-aefent functionality?

(And so on.) Even though a body of versatile techniques igabla, in reality, grammar-
ware is typically treated without adhering to a proper eegiing discipline. Grammar-
ware seems to be second-class software. For instance,apragfactoring is a well-
established practise according to modern object-oriemettiodology. By contrast, gram-
mar refactoring is weakly understood and hardly practised.

1.6 A concerted, interdisciplinary research effort

In order to make progress with grammarware engineering, Weeed a large scale effort

in the software engineering and programming language caritias. The present agenda
takes an inventory, and it identifies open challenges. Thesteps are the following. We

need dedicated scientific meetings. PhD students need kaupithe listed challenges.

We need to start working on an engineering handbook for gramware. We also need

grammarware-aware curricula at universities.

Grammarware engineerireguld have been a classic field of computer science already for
decades. After all, grammars and grammar-dependent geftava no recent invention.
Grammarware engineering fits well with other fields such age language technology,
generative programming, software re-/reverse enginggaspect-oriented software devel-
opment, program transformation, meta-modelling, and raddeen development. That s,
grammarware engineeriremployshese fields andontributesto them. In this complex
context, the focus of grammarware engineering is clearlindd: the engineering aspects
of grammars and grammatical structure in software systems.

1.7 Road-map of the agenda

In Sec. 2, we will compile amventory of grammarwatreln Sec. 3, we will analyse the
reality of dealing with grammarware, which we will have toysmarise agrammarware
hacking In Sec. 4, we will uncover thgrammarware dilemman an attempt to explain the
current, suboptimal situation. This agenda has to cut ai@okdot in order to prepare the
ground for a significant research effort on grammarwareregging. In Sec. 5, we will lay
out thepromisesof an engineering discipline for grammarware. In Sec. 6, \Wedentify
essentiaprinciplesof the emerging discipline. Ultimately, in Sec. 7, we willapile a
substantial list ofesearch challengesvhich call for basic and applied research projects.
Throughout the paper, we will survey existing contribuida the emerging engineering
discipline for grammarware.
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A fragment of a BNF grammar that defines the concrete syntaxsahple language.

[axiom] program ::= declarations statements
[decs]  declarations ::= declaration *;" declarations
[nodec] declarations = e

[dec] declaration = id“" type

[concat] statements = statement ;" statements
[skip]  statements = €

[assign] statement = id “:=" expression

[var] expression = id

A fragment of a DTD for the XML representation of the orgatits@al structure in a company.
<! DOCTYPE conpany [

<! ELEMENT conpany (dept *)

<! ELEMENT dept (nane, manager, unitx)
<! ATTLI ST dept dept _num | D #REQUI RED

<! ELEMENT uni t (enpl oyee | dept)

<! ELEMENT enpl oyee (person, salary)
<I ATTLI ST enpl oyee busunit |DREF #l MPLI ED
<! ELEMENT person (nane, address)

V VVVVYVYV

1>

Some algebraic data types in Haskell notation for evenesrat the execution of C programs.

data EzecProg = ExecProg [Either ExzecStmt FvalExpr]
data EzecStmt = ExecStmt [Either EzecStmt EvalEzpr]
data EwvalExzpr = EvalCall FuncCall

| EvalAssign Assign

| EvalOthers [FvalEzpr]

data FuncCall = Call [EvalEzpr] [EzecStmt]

data Assign = Assign [EvalEzpr] Desti

data Desti = .-

Fig. 1. Grammar sample§he syntax definition at the top is perhaps the most obvioaspbe of a grammar.
The XML DTD in the middle defines the abstract representatf@company’s organisational structure. It makes
use of specific XML features such as attributes and refesentiee signature at the bottom defines the structure
of event traces for the execution of C programs. Here, we peeifically interested in tracing assignments and
function calls.

2. AN INVENTORY OF GRAMMARWARE
We use the term grammar as an aliasdwuctural descriptionsn software systems, i.e.:

Grammar = structural description in software systems
= description of structuresused in softwar e systems

Some representative examples of grammars are shown in Figvtenever a software
component involves grammatical structure, then we attegammar dependency(We
will also say that the componenbmmits to grammatical structude In this section, we
will first demarcate our use of the term “grammar”, i.e., Gstuural description”, and we
will then compile an inventory of grammar formalisms, graarmotations, grammar use
cases, grammar-based formalisms and notations, and fdrgnaramar dependencies.
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2.1 Structural descriptions

When we say that grammars are structural descriptions, we marumber of informal
assumptions as to what it means to be a structural descriptarstly, we assume that
a grammar (potentially) deals witkeveral interrelated categoriess opposed to a single
category; cf. the nonterminals in a context-free grammaco&dly, we assume that there
are constructs for thérmation of compound structureThirdly, we assume that there
are constructs for thehoice among different alternativesf. multiple productions for a
nonterminal in a context-free grammar, or theédperator in the BNF formalism.

These assumptions are intentionally lax, as to avoid ekoiusf grammar forms that we
did not think of or that do not yet exist. However, we can ferthlemarcate the term
grammar by excluding some artifacts and by identifying leolide cases:

—A parser specification isota grammar, but it is aanrichedgrammar.
—A type declaration for polymorphic lists istavial (parameterised) grammar.

—An attribute grammar [Knuth 1968] is not a grammar in ourtnieked sense, but it
definitely comprisesa grammar, i.e., the context-free grammar whose derivatess
are attributed eventually. It is worth noting that the &atite grammar might comprise
yet another grammar — the one for the structures that arbegised.

—What is the relationship between the terms “grammar” anddet’ (such as software
models in UML)? One direction: a model is not necessarilyangnar because models
can describe aspects other than structure. In particutamftaare model isiota gram-
mar because grammars are models of structures, whereasusofhodels are models
of software. However, the class-diagrammatic part of axsark modetouldbe viewed
as a grammar — if the classes, without all behavioural detééhd themselves to a
meaningful description of structures. A good example is are®codemodel The
other direction: a grammar is certainly a model, namely aehofistructures, but it is,
at best, an incomplete software model because a grammasdify does not model a
software application.

—What is the relationship between the terms “grammar” andtaymodel” (in the sense
of meta-modelling and model-driven development [metarhodm 2005; Mellor et al.
2003])? There are varying definitions for the latter term. &d®pt the view that a
meta-model is a model of models such as a model of softwarelnio@hat is, meta-
models describe language constructs for modelling. Orectiin: we reckon that a
meta-modeincludesa grammar, i.e., the structural description of a modellargguage
(as opposed to semantic constraints on models, if any). #tex direction:somegram-
mars are meta-models, namely those that describe langoageucts for modelling (in
particular, software modelling).

—A relational schema (in the sense of relational databasead)orderline case. In general,
we do not expect grammarware engineering to subsume mddtioodelling. Techni-
cally, the relational model comprises details, such asdarkey constraints, that go ar-
guably beyond plain “formation of structure”. Furthermgdiee (basic) relational model
lacks expressiveness fgeneralalternatives; it only allows for NULL vs. NOT NULL
values, which correspond to the regular operator “?” in EB&tminology.
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2.2 Grammar formalisms
We presume that the followinfigrmalismsprovide the foundation for grammars:

—Context-free grammars.
—Algebraic signatures.
—Regular tree and graph grammars.

Clearly, these formalisms differ regarding expressiverssxl convenience. Context-free
grammars happen to enable the definition of concrete syritaspogramming languages.
Algebraic signatures are suitable for (per-definition)mbauous abstract syntaxes. Graph
grammars and the underlying schemas cater for graph stesctu

There exist all kinds of partial, sometimes ad-hoc mappiagslate one formalism to the
other. For instance, one cannverta context-free grammar into a signature by discarding
terminals, by inventing a function symbol per productiomd &inally by recasting produc-
tions as types of function symbols. (Actually, there exéstsomewhat forgotten algebraic
interpretation of context-free grammars, which precigelynalises this direction.) The
inverse direction can also be served by assuming a fixed»sjotéunction symbols such
as prefix notation with parentheses and commas.

A grammar can be amenable to differarerpretations Since we want to emphasise that a
grammar is a structural description, some interpretatiwasnore meaningful than others.
Let us consider some options for context-free grammarst fie note that it is of minor
relevance whether we consider an acceptance-based vei@tien-based semantics. For
our purposes, a useful semantics of a context-free gransntiae iset of all valid derivation
trees [Aho and Ullman 73]. By contrast, the de-facto statd@mantics of a context-
free grammar is its generated language [Aho and Ullman 73] setaf strings without
attached structure. We contend that this semantics doesmutasise a grammar’s role to
serve as a structural description.

2.3 Grammar notations

Actual structural descriptions are normally given in sagr@mmar notationfor example:

—Backus-Naur Form (BNF [Backus 1960]), Extended BNF (EBN&J 1996]).
—The Syntax Definition Formalisms (SDF [Heering et al. 1988ser 1997]).
—The Abstract Syntax Description Language (ASDL [Wang e1887]).
—Abstract Syntax Notation One (ASN.1 [Dubuisson 2000]).

—Syntax diagrams [Herriot 1976; McClure 1989; Braz 1990].

—Algebraic data types as in functional languages.

—Class dictionaries [Lieberherr 1988].

—UML class diagrams without behaviour [Gogolla and Kollm&®00].
—XML schema definitions (XSD [W3C 2003]).

—Document type definitions (DTD [W3C 2004]).

In fact, there are so many grammar notations that we do naaancomplete enumeration.

It is important to realise that grammar notations do not ssaely reveal their grammar
affinity via their official name. For instance, a large paratffgrammars in this world are
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“programmed” in the type language of some programming laggue.g., in the common
type system for .NET, or as polymorphic algebraic data typégoed functional program-
ming languages. (We recall the last example in Fig. 1, whitipleyed algebraic data
types.)

Some grammar notations directly resemble a specific granfonaalism. For instance,
BNF corresponds to context-free grammars. Other gramntations might be more con-
venient than the underlying formalism, but not necessariye expressive — in tHermal
sense of the generated language. For instance, EBNF addsniemce notation for reg-
ular operators to BNF. Hence, EBNF allows us to describecsiras at a higher-level of
abstraction, using a richer set of idioms, when compared\b. Bret other grammar no-
tations appeal to a certain programmatic use. For instahass dictionaries appeal to the
object-oriented paradigm; they cater immediately for nithace hierarchies. Finally, there
are also grammar notations that strictly enhance a givendtism or a mix of formalisms.
For instance, XSD is often said to have its foundation in ¢neenmars, but, in fact, it goes
beyond simple tree grammars due to its support for refesesice unstructured data.

As with grammar formalisms, some couples of grammar notatere amenable to uni-
directional or even bi-directional conversion. For ing@none can convert an EBNF
grammar to a BNF grammar and vice versa. We also call thiscifieation” and “deyac-
cification” for obvious reasons [Lammel and Wachsmuth 300the SDF grammar format
is richer than pure BNF and EBNF; SDF adds constructs for neoidation and disam-
biguation. Hence, BNF grammars are easily converted inte §ammars, but an inverse
conversion must be necessarily incomplete.

2.4 Grammar use cases

The grammars in Fig. 1 aggure grammarsi.e., plain structural descriptions. Neverthe-
less, we can infer hints regarding the intended use casé®sé grammars. The BNF at
the top of the figure comprises detailsaafncrete syntaas needed for a language parser
(oran unparser). The DTD in the middle favounmarkup-based representatias needed
for XML processing, tool interoperability, or external sige. Also, the provision of refer-
ences from employees to their departments (cf. ID and IDRIEgyests that the use case
asks for “easy” navigation from employees to top-level dapants (“business units”) —
even though this provision is redundant because an empkigesent is unambiguously
nested inside its business unit. The algebraic signatuhediottom of the figure does not
involve any concrete syntax or markup, but it addressesrtiealess a specific use case.
Thatis, the description captures the structure of (prokdeecific) event traces of program
execution. Such event grammars facilitate debugging aselrtien checking [Auguston
1995]. Note that the algebraic signature for the event sratiffers from the (abstract)
syntax definition of the C programming language — even thahgke two grammatical
structures are related in a systematic manner.

For clarity, we use the tergrammar use casw refer to the purpose of a (possibly en-
riched) structural description. We distinguighbstractvs. concrete use caseén abstract
use case covers the overall purpose of a grammar withouerefe to operational argu-
ments. For instance, the use cases “syntax definition” acifarge format” are abstract.
A concrete use case commits to an actual category of grardepndent software, which
employs a grammar in a specific, operational manner. Faaricst, “parsing” or “seriali-
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sation” are concrete use cases. Even the most abstractaesehiat at some problem do-
main. For instance, “syntax definition” hints at programgienguages or special-purpose
languages, and “exchange format” hints at tool interogétab

Here are details for representative examples of abstractigiar use cases:

—Source-code modetse basically syntax definitions, but they are enriched Yei#ttures
such as annotation, scaffolding, and markup [Purtilo anth@an 1989; Heuring et al.
1989; Koschke and Girard 1998; Sellink and Verhoef 2000bmielsand Kontogiannis
2000; Holt et al. 2000; Sim and Koschke 2001; Malton et al.122@ordy et al. 2001,
Kort and Lammel 2003b; Winter 2003]. Also, source-code aisdend to be defined
such that they are effectively exchange formats at the sanee t

—Intermediate program representatioare akin to syntax definitions except that they are
concerned with specific intermediate languages as theysactin compiler middle and
back-ends as well as static analysers. Representativepéemare the formats PDG and
SSA [Ferrante et al. 1987; Cytron et al. 1991]. Compared ain@yntax definitions,
these formats cater directly for control-flow and data-floalgises.

—Domain-specific exchange formaater for interoperation among software components
in a given domain. For instance, the ATerm format [van demBet al. 2000] addresses
the domain of generic language technology, and the GXL fofidalt et al. 2000]
addresses the domain of graph-based tools. The former fasragoroprietary design,
whereas the latter format employs XML through a domain-gjgeXML schema.

—Interaction protocolscater for component communication and stream processing in
object-oriented or agent-based systems. The protocotsideghe actions to be per-
formed by the collaborators in groups of objects or agente[(®t al. 2001; Lind 2002].
Such protocols regulate sequences of actions, choicesdoclhing), and iteration (or
recursive interactions). For instance, session typedg®ib et al. 2003; Gay et al.
2003] arguably describe interaction protocols in a grarlikarstyle.

There are just too many concrete grammar use cases to lisiheNe would even feel un-

comfortable to fully categorise them because this is a rekegapic on its own. We choose
the general problem domain of language processing (inofuldinguage implementation)
to list someconcrete grammar use case. In fact, we list typical langpeg@essors or com-

ponents thereof. These concrete use cases tend to invaleeivayntaxes, intermediate
representations, source-code models and other sortsrohugies:

—Debuggers [Auguston 1995; Olivier 2000].

—Program specialisers [Jones et al. 1993; Consel et al.]2004

—Pre-processors [Favre 1996; Spinellis 2003] and postg®sors.

—Code generators in back-ends [Emmelmann et al. 1989; Fetiaé 1992].

—Pretty printers [van den Brand and Visser 1996; de Jong2]200

—Documentation generators [Sun Microsystems 2002; Ma2i002].

In this agenda, all the grammar use cases that we mentiomkeel tosoftware engineer-
ing including program development. One could favour an evead@oview on grammar-
ware. Indeed, in [Mernik et al. 2004], the authors revamgthssic term “grammar-based

system” while including use cases that are not just relatsdftware engineering, but also
to artificial intelligence, genetic computing, and otheldéein computer science.
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2.5 Meta-grammarware

By itself, a grammar is not executable in the immediate sefiseprogram. It requires
commitment to a concrete use case and usually also an etigchenmar before we can
view it as an executable specification (or a program). We hsddrmmeta-grammar-
ware to refer to any software that supports concrete grammar asesdy some means
of meta-programming, generative programming or domageiic language implementa-
tion [Eisenecker and Czarnecki 2000; van Deursen et al.]2000

The archetypal example of meta-grammarware is a programergtnm that takes an (en-
riched) grammar and produces an actual software compoueinies a parser. In practise,
meta-grammarware is often packaged in frameworks for soéiwransformation, program
analysis, language processing, and program generatioampgs of such frameworks
include the following: ASF+SDF Meta-Environment [Klint 98; van den Brand et al.
2001], Cocktail [Grosch and Emmelmann 1991], Cornell Sgaiker Generator [Reps
and Teitelbaum 1984], DMS [Baxter 1992], Eli [Gray et al. 28FermaT [Ward 1999],
GENTLE [Schroer 1997], Lrc [Kuiper and Saraiva 1998], Resg[Progres group 2004],
Refine [Smith et al. 1985; Abraido-Fandino 1987], RIGAL [Awsgon 1990], S/SL [Holt
et al. 1982], Stratego [Visser 2001a], Strafunski [Lamamadl Visser 2003], TXL [Cordy
et al. 2002].

There are a few use cases of meta-grammarware that allowdamimediate derivation of
the desired software component from plain grammaticatsire. For instance, the gen-
eration of an object-oriented API for matching, buildinglamalking over grammatically
structured data [Wallace and Runciman 1999; de Jonge aién2900; Sim 2000; Jong
and Olivier 2004; Lammel and Visser 2003; Moreau et al. 2093eadily possible for
algebraic signatures or suitably restricted context-freenmars.

Most use cases of meta-grammarware require enrichedwtalidescriptions, for instance:

—Parser specificationsuch as those processed by the YACC tool [Johnson 1975] or any
other parser generator. These specifications typicallyatomdditional elements such
as the parser-to-lexer binding, semantic actions, andpaag

—Test-set specificatiormich as those processed by the the DGL tool [Maurer 1990] or
any other grammar-based test-data generator. These spgeifs annotate the basic
grammar with control information as to guide test-data gatien.

—Pretty-printing specificationpzan den Brand and Visser 1996; de Jonge 2002]. These
specifications attach horizontal and vertical alignmergatives to the grammar struc-
ture as to guide line breaks and indentation.

—Serialisable object modelsvhere meta-data for serialisation is attached to classés a
fields in the object model such that serialisation (and didésation) functionality can
be generated by a tool or it can be defined in terms of reflection

Our choice of the term meta-grammarware is inspired by Fadr@ has coined the term
metaware[Favre 2003] in the meta-modelling context [metamodel.@05]. That is,
metaware is application-independent software that halpdyzing software applications
on the basis of suitable meta-models. We emphasise thaethermeta-grammarware
applies to grammarware rather than software models and medklling.
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2.6 Grammar-based formalisms and notations

There are actually a number of more fundamegtammar-based formalismend corre-
sponding notations. These are prominent examples of sachrgar-based formalisms:

—Attribute grammars [Knuth 1968; Paakki 1995].

—General tree and graph grammars [Comon et al. 2003; Ehailg £996].
—Definite clause grammars (DCGSs) [Pereira and Warren 1980].

—Advanced grammar formalisms for visual languages [M#rend Meyer 1998].
—Logic programs (cf. the grammatical view in [Deransart 8aluszyhski 1993]).

Corresponding grammar-based notations can be used fomghilernentation of concrete
grammar use cases. For instance, the Progres framewordréRrgroup 2004] supports
graph grammars, while compiler compilers such as Cock@ibfch and Emmelmann
1991], Cornell Synthesizer Generator [Reps and Teitelb&@84] and Eli [Gray et al.
1992] support attribute grammars.

We note that the distinction fundamental grammar formaiss specification languages
for meta-grammarware is not exact. For instance, parsaifgaions in the sense of

YACC are often viewed as an example of attribute grammare. diffierence is of an ab-

stract, conceptual kind: grammar-based formalisms peofddmal, computational frame-

works with different assorted declarative and operaticeahantics. By contrast, speci-
fication languages for concrete grammar use cases werendddsigck-to-back with the

meta-grammarware that supports them.

The aforementioned grammar-based formalisms have in continad the formation of ba-
sic grammatical structure is still traceable in the otheesgnriched structural descriptions.
In Fig. 2, we provide illustrations. We discuss a few examplethe relationship between
basic structural description and complete description:

—An attribute grammar starts from a context-free grammailereach nonterminal is as-
sociated with attributes, and each production is assatiaitts computations and condi-
tions on the attributes of the involved attributes. Thebeasntext-free grammar remains
perfectly traceable in the completed attribute grammar.

—Likewise, the attributed multi-set grammar [Golin 1994]Rig. 2 starts from the pro-
ductions of a multi-set grammar, while there are geomettribates and correspond-
ing computations and conditions. The choice of a multi-saetrgnar (as opposed to a
context-free grammar) implies that formation of structisr®ased on sets rather than
sequences.

—The definite clause grammar in Fig. 2 is more entangled instese that semantic
actions for checking context conditions are injected i@ tontext-free productions.
However, the pure productions were easily extracted, ieagary.

—Regular graph grammars are still in accordance with owrrapsions for structural de-
scriptions. Most applications of graph grammars [Nagl 19486ffmann 1982; Nagl
1985; Schirr 1990; 1994; 1997] require more general grapmgars. Given a gen-
eral graph grammar, we can again identify a basic structlgatription, namely the
underlyinggraph schemaSuch a schema defines types of nodes and edges.
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A definite clause grammar for statically correct programs.
program --> declarations([],L), statements(L).

decl arations(LO, L2) --> declaration(LO,L1), [";"], declarations(L1,L2).
decl arations(L,L) --> 7.

declaration(L,[(l,T)|L])
--> [id(1)], [":"]1., type(T), { \+ menber((I,_),L) }.

statements(L) --> statement (L), [";"], statenments(L).
statements(_) -->[].

statement (L) --> [id(l)], [":="], expression(L,T), { menber((I,T),L) }.
expression(L, T) -->[id(l)], { menber((I,T),L) }.

An attributed multi-set grammar for horizontally alignésts separated by line segments.

lal] List — HorLineSeg
Listg.xmin HorLineSeg.xmin
Listyg.xmazx HorLineSeg.xmax
Listg.ymin HorLineSeg.ymin
Listg.ymazx HorLineSeg.ymazx
Listg.ycenter HorLineSeg.ycenter

[a2] Listo — HorLineSeg Element Listy
Element.ycenter HorLineSeg.ycenter
HorLineSeg.ycenter Listy.ycenter
HorLineSeg.xmazx Element.zmin
FElement.zmazx Listy.xmin
Listg.xmin HorLineSeg.xmin
Listyg.xmaz Listi.xmazx
Listo.ymin min(min(HorLineSeg.ymin, Element.ymin), List,.ymin)
Listg.ymazx maz(maz(HorLineSeg.ymaz, Element.ymax), List,.ymaz)
Listg.ycenter Element.ycenter

Fig. 2. lllustration of grammar-based formalismEhe definite clause grammar at the top refines the syntax
definition from Fig. 1. Extra semantic actions (€f.. . . }) establish type correctness with regard to a symbol
table L. The attributed multi-set grammar at the bottom defines theal syntax of horizontally aligned lists:
think of__z__y__z__. There are constraints on the geometric attributesaz, zmin, etc. that ensure line segments
and list elements to be horizontally aligned along a cenfrmeaning.

2.7 Commitment to grammatical structure

It is trivial to observe that parser specifications (andvlilse the generated parsers) in-
volve grammar dependencies because each such specificsatiasedon a structural de-
scription quite obviously. More generally, the use of angrgmar-based formalism or
meta-grammarware implies grammar dependencies of sudlia kind. However, soft-
ware components tend to commit to grammatical structure éelymmentioning patterns
of grammatical structure giving rise to more scattered gnamdependencies.

The modern, archetypal example is the scenario of a (proBfeific) XML document
processor, be it an XSLT program. This program commits togtteenmatical structure
for the input, as expressed in patternsfizatched input Also, the processor is likely to
commit to the grammatical structure for the output, as esqad in patterns fdouilt output

Notice that the underlying program merely refers to granmaastructure (for input and
output), but it cannot be viewed as an enriched structugaksentation by itself. As an
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aside, the document processor is “driven” by (the gramraksitucture of) thenputwith
a subordinated commitment to (the grammatical structuréhefoutput.

The fact that grammatical structure is entangled in progresmto some extent, indented
and it is inherent to grammar-based programming. Many sséwomponents, regardless
of the used programming language and programming paradégoh,up committing to
grammatical structure. Here are diverse examples:

—In imperative and object-oriented programs, one can uds fsPoperate on grammati-
cally structured data, e.g., to match, build and walk ovéa.d@his approach is widely
used whenever components for language processing or dotyraxessing are en-
coded in mainstream languages. The APIs for data accesdtanegenerated by pro-
gram generators [Grosch 1992; Visser 2001b; Jong and ©&64]. Theuseof the
API corresponds to commitment to grammatical structure.

—In functional and logic programs, heterogeneous tre@eathaata is manipulated on a
regular basis. Depending on the fact whether we look at edtygpeintyped language,
the grammatical structure is available explicitly or ingjtly (through use in code or
documentation). As an aside, there is no need for handecraftgenerated APIs for data
access, when compared to mainstream imperative and OOdgagibecause functional
and logic languages support term matching and buildingelgti

—Some approaches to term rewriting [van den Brand et al. ;1d88eau et al. 2003] target
language processing. For instance, the ASF+SDF Meta-&mvient [Klint 1993; van
den Brand et al. 2001] employs a marriage of a syntax definitomalism (SDF [Heer-
ing et al. 1989]) for the terms to be processed and an algebpaiification formalism
(ASF [Bergstra et al. 1989]) for the actual rewriting rules.

—Grammar knowledge can also be expressed by the mere useafigeombinator li-
braries for concrete grammar use cases such as parsirty;|prieting, or generic traver-
sal [Hutton and Meijer 1998; Swierstra 2001; Hughes 19@Bnhiel and Visser 2002].
The required combinators are provided as abstractionsiprbgramming language at
hand, e.g., as higher-order functions in the case of funatiprogramming. The encod-
ing of grammatical structure boils down &pplicationsof the combinators.

—Reflective and aspect-oriented functionality commits riangmatical structure because
the employed metaobject protocols and join point modelsZklies et al. 1991; Kicza-
les et al. 1997; ARBmann and Ludwig 1999] are based on gramnidost notably,
these protocols or models are ingeniously related to theatisyntax of the under-
lying programming language. A more concrete scenario isigiging based on event
grammars [Auguston 1995], where the steps of program eixecate abstracted in a
grammatical event structure, which is aligned with the r@zstsyntax of the language.

—Any library (in any language) that offers an API for the ctastion (or “formation”) of
functionality presumes that user code commits to the APIcwborresponds to com-
mitment to grammatical structure in a broader sense. Therather mechanisms for the
systematic construction of functionality or entire softevaystems, which give rise to
similar commitments. Examples include template instdiotia application generation,
system composition, and program synthesis [Smith 199Ceneisker and Czarnecki
2000; Batory et al. 1994; Jarzabek 1995; Thibault and Cdr3eT].
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We note that commitment to grammar knowledge in programs doenecessarily imply
thatprecise pattern®f grammatical structure are to be expected in source codeinF
stance, industrial compiler front-ends are often handteda There are even techniques
for grammarware development that intentionally depantnfie strict grammar-based ap-
proach. For instance, the frameworks RIGAL [Auguston 198Q] S/SL [Holt et al. 1982]
provide relatively free-wheeling idioms for parsing. Anpare style of encoding gram-
matical structure is also practised in languages like PeRython; see [Klusener et al.
2005] for an example.

3. STATE OF THE ART: GRAMMARWARE HACKING

Given the pervasive role of grammars in software systemsdawvelopment processes,
one may expect that there exists a comprehensive set of tedises adding up to an
engineering discipline for grammarware. However:

In reality, grammarware is treated, to a large extent, in aktaoc manner with
regard to design, implementation, transformation, recgviesting, etc.

We will first contrast a typical case of wide-spread ad-heatiment with the potential of

an engineering approach. Then, we will substantiate a ladlest practises at a more
general level. Afterwards, we will argue that the lack ofth@actises is not too surprising
since even foundations are missing. Also, there are no ceimepisive books on the subject,
neither do university curricula pay sufficient attention.ye

3.1 Hacking vs. engineering

To give a prototypical example of current ad-hoc approachegonsider the development
of parsers, as needed for software re-/reverse enginetatg The common approach
(shown on the left-hand side in Fig. 3) is to manually encogi@anmar in the idiosyncratic
input language of a specific parser generator. We encowseone instance of grammar-
ware tooling in this process: a parser generator. The dyipgiinciple is to appeal to the
grammar class that is supported by the parser generator er détne by trial and error.
The codebase, that must be parsed, is the oracle for thisgsoc

There are a number of techniques that could be put to worldeardo convert from hacking
to engineering. Some of these techniques are illustrateédeoright-hand side in Fig. 3:

—A technology-neutral grammariscovered semi-automaticalisom available grammar
knowledge, e.g., from a language reference that contaavs’‘grammatical structure.
In this process, the grammar is incrementally improved bpgformations that model
corrections and provisions of omissions. We can leveragls for grammar extraction
and transformation.

—We assume that the grammar can be executed by a prototygiegpramework. At this
stage, the quality of parse trees is irrelevant. Also, weht@rgely ignore the issue of
grammar-class conflicts and grammar ambiguities. We usgrdramar as an acceptor
only. The codebase drives the incremental improvementofitammar.

—Parser specifications aderived semi-automaticallyom the recovered grammar using
tools that customise grammars for a certain technologyfetift parsing technologies
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"Grammarware hacking" ! "Grammarware engineering"
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Fig. 3. Parser developmenthe left-hand side illustrates common practise. Grammamitedge, as contained

in a language reference, is coded directly as a proprietaayspr specification. Options for improvements are
shown on the right-hand side. A technology-neutral gramimaecovered from the grammar knowledge, and
subsequent customisation can target different parsemigldgies. The parsers are not just tested against the
codebase of interest, but they are also stress-testeda Brammarware tooling supports this process.

can be targeted as opposed to an early commitment to a specificology. The cus-
tomisation process is likely to require input from the graanware engineer.

—There are opportunities for quality assurance by meanssting. We can stress-test
the derived parsers using huge generated test-data setsanfest a reference parser
with positive and negative cases (not shown in the figure).c#eperform a coverage
analysis for the given codebase (not shown in the figure)adses representative it is.

We have exercised elements of this approach in our team tdng sf languages, e.g., for
Cobol [Lammel and Verhoef 2001b], which is widely used isiness-critical systems, and
for PLEX [Sellink and Verhoef 2000a], which is a proprietéapguage used at Ericsson.

3.2 Lack of best practises

Our claim about grammarware hacking can be substantiatddavhumber of general
observations that concern the treatment of grammars iwargtdevelopment:

—There is no established approach for adapting grammarsaceable and reliable man-
ner — not to mention the even more difficult problem of adaptmnammatical struc-
ture that is ingrained in grammar-dependent software. iBasmajor problem because
grammatical structure is undoubtedly subject to evolution
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—There is no established approach for maintaining relatigps between grammatical
structure as it is scattered over different grammar vanstiand grammar-dependent
software components. This situation implies a barrier f@i@ion of grammarware.

—There is no established approach for delaying commitn@specific technology for
the implementation of grammar use cases. Specific techypahoplies idiosyncratic
notations, which make it difficult to alter the chosen tedbgg and to reuse parts of the
solution that are conceptually more generic.

The severity of the lack of best practises is best illustratigh yet another example of large
scale. There exists a widespread belief {feaiser generatiorcounts as a good grammar-
biased example of automated software engineering. Thisfbelincompatible with the
fact that some major compiler vendors do not employ any payseerator. (This claim
is based on personal communication. The vendors do not wible named here.) One
of the reasons that is sometimes cited is the insufficienpeudgdor the customisation of
generated parsers. Another limitation of parser genesdddhat they do not provide suf-
ficient programmer support for the grammar’s convergendbaqoroperties required by
the technology. This leads to laborious hacking: cf. confésolution with LALR(1); cf.
disambiguation with generalised LR parsing. Parser deweémnt is still a black art [van
den Brand et al. 1998; Blasband 2001]. So if anyone is sayiaggrammarware engi-
neering is a reality just because we have (many) parser gemgy then this is not just a
too restricted understanding of the term grammarware eegiing; even the implicit claim
about the adoption of parser generators does not hold as such

3.3 Lack of comprehensive foundations
In fact, there is not just a lack of best practises. Even thedunentals are missing:

—There is no “discipline of programming” (of the kind [Dijka 1976]) for grammars
and grammar-dependent software. Likewise, there is nolfematics of program con-
struction” for grammars and grammar-dependent softwate gxagmatic level, we do
not even have design patterns to communicate, and we als@aiaeffective notion of
modular grammarware.

—There is no comprehensitieeory for transforming grammarwaréhere are at best some
specific kinds of grammar transformations, and some sorsgfably related program
and model transformations. We also lack a dedicated modekfsion management.

—There is no comprehensitieeory for testing grammarway¢his includes testing gram-
mars themselves as well as testing grammar-dependentagsefinv a grammar-aware
manner. We also lack metrics and other quality notions.

—There is no comprehensiveodel for debugging grammarwaas there exists for other
sorts of programs, e.g., the box/port model for logic pragrang [Byrd 1980]. Debug-
ging parsers or other grammar-dependent software is a htack

—There is no unifiedramework for relating major grammar forms and notatiansa
reasonably operational manner. Theoretical expressigeresults provide little help
with the mediation between the grammar forms in actual grammare development.
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3.4 Lack of books on grammarware

It is instructive to notice how little knowledge on grammare is available in the form
of textbooks or engineering handbooks. Even in restrictedains, there are hardly text-
books that cover engineering aspects. For instance, textempiler construction, e.g.,
[Aho and Ullman 73; Aho et al. 1986; Wilhelm and Maurer 199§ ,into details of pars-
ing algorithms, but they do not address engineering asgectsas grammar style, gram-
mar metrics, grammar customisation, evolutionary grantraasformations, and grammar
testing. There exist a few textbooks that discuss partiétdeneworks for generic language
technology or compiler construction, e.g., [van Deurseal €1996; Schroer 1997], with-
out coverage of general engineering aspects. There extboteks on problem domains
that involve grammar-based programming techniques. Rbaimte, there is a comprehen-
sive textbook on generative programming [Eisenecker aratr@ki 2000]. There is no
such book for grammar-based software transformation. elbgist a few textbooks on
paradigms for grammar-based programming techniques,atdbute grammars [Alblas
and Melichar 1991] and graph transformation [Ehrig et aB@]9 Again, these books fo-
cus on a specific paradigm without noteworthy coverage oétiggneering aspects of the
involved grammars.

3.5 Lack of coverage in curricula

In the last three decades or so, parsing algorithms and ¢engoinstruction formed in-
tegral parts of computer science curricula at most unitiessi The default host for these
topics was indeed a compiler class. Some related, thearespects, such as the Chom-
sky hierarchy, were likely to be covered in a class on foundatof computer science.
Engineering aspects of grammarware have never been covaradly. It is conceivable
that a modern compiler class [Griswold 2002] incorporatesansoftware engineering in
general, and engineering aspects of grammars (as theyioacoompilers) in particular.

A dedicated grammarware class will be more comprehensiterins of the engineering
aspects it can cover. Also, such a class will be a strong bostiscussing different prob-
lem domains for grammarwarecluding compiler construction. Over the last few years,
the fields of meta-modelling and model-driven developmBi2D) have received ample
attention from the research community, and this trend céuilgi reach curricula soon.
A meta-modelling/MDD class can be customised such thatierotechnical aspects of
grammarware engineering, e.g., the different grammartioots and their relationships,
the various grammar use cases and grammar-based testkayvide, classes on software
re-/reverse engineering, if they became popular, can be meaxde grammar-aware.

4., THE GRAMMARWARE DILEMMA
We have shown that even though grammarware permeates spfiygtems, its engineer-
ing aspects are somewhat neglected. Here is what we calfainengarware dilemma:

Improving on grammarware hacking sounds like such a gooalide
Why did it not happen so far?
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4.1 Unpopular grammarware research

Part of the answer lies in@opularity problenof grammar research. Grammars in the sense
of definitions of string languages are well-studied sulgj@Ticomputer science. Basic re-
search on grammars and parsing was a wave of the 1960s ang. TB7® pervasiveness
of grammars in software systems was not yet so obvious atrtiee Hence, engineering
aspects did not get into the focus. We might see now the biegjrof a second wave of
grammar research, where a new generation of researchéssaeers this theme, while
being driven by engineering aspects. According to ThomdseU The Structure of Sci-
entific Revolutions” [Kuhn 1970], research generally tetalgo in such waves, while so-
cial issues play an immanent role in this process. When gramemthusiastic researchers
of the first wave turned into senior researchers, then theioj staff often favoured the
exploration of different territory.

4.2 Myths about grammarware

The grammarware dilemma must also be explained in terms éfisrgbout grammar-
ware. These myths are barriers for anyone who wants to dan&@sen grammarware.
By naming these myths, we hope to prepare the ground for work comprehensive
engineering discipline for grammarware.

—Myth “Grammarware engineering is all about parser develamti

In any language processor, the front-end with its parsingtfonality is so overwhelm-
ingly visible that one can easily neglect all the other grarsithat occur in a language
processor: different abstract syntaxes with variationarorotations, eliminated patterns
due to normalisation, preprocessing information, andrsth®oftware components that
do not even start from any concrete syntax are easily neglex$ grammarware al-
together. For instance, a number of mainstream technadgieaspect-oriented pro-
gramming use XML at the surface for their pointcut languagéiser than any concrete
syntax. The underlying schema for pointcuts and functionbbhsed on it should still
be subjected to grammarware engineering.

—Myth “Grammarware engineering is all about language progiag.”

Incidentally, our reply to the parsing myth invites for steheduction. However, there
are clearly grammar use cases that do not deal with languagegsing. For instance,
the use case “interaction protocol” is not related to lamguprocessing according to
common sense. Another example: the problem of derivingalgéical (XML-based)
views on relational data in a database, as addressed byisaldda access APIs in mod-
ern programming environments, is about data processihgr#tan language process-
ing. Nevertheless, the language processing myth is agtaalseful approximation of
the scope of grammarware engineering, while it is importarddopt a broad view
on languages: programming languages, domain-specificiéages, configuration lan-
guages, modelling languages.

—Myth “XML is the answer”

Recall the question: what are the software engineer’s nisth@ design, customise,
implement, ... and test grammars; how to handle grammatioatture that is imple-
mented in software components? “XML grammars” (i.e., DTRBIL schemas, etc.)
are in need of an engineering discipline as much as any otherrgar notation. Issues



P. Klint and R. Lammel and C. Verhoef . 21

of schema evolution, co-evolution of schema-dependenivaod, and schema-aware
testing of schema-based software are all urgent reseapitstim the “narrow” XML
context. Also, XML offers new challenges for grammarwargiaeering. For instance,
the mere mapping between different grammar notations islaiesy non-trivial if an
(arbitrary) XML schema is involved on either side. FinalKML lacks support for
some grammar use cases; most notably for concrete syntatioefs.

—Myth “Meta-modelling is the answer”

We rehash: Grammarware engineering addresses develoganiemiaintenance of gram-
mars and grammar-dependent software. By contrast, metieltimg focuses on the pro-
vision of meta-models, i.e., models of models, in particut@odels of software models.
According to Sec. 2.1, grammars and meta-models are noyisiaiple equivalence or
subsumption relationship, which implies that meta-madgland grammarware engi-
neering are complementary. In particular, most grammaud te be models (of struc-
tures) rather thametamodels of anything. One might say that “meta-modelling for
grammars” can be understood to cover the field of “grammaratiiad languages”
(BNF, EBNF, ASN.1, etc.), which corresponds, indeed, to rage part of grammar-
ware engineering. It is hard to see how contemporary metdeitiog would address
the technical challenges in grammarware engineering, teagpsformation and testing
of grammar-dependent software, customisation of gramifoansse cases, or commit-
ment to common technology options.

—Myth “Grammarware engineering is a form of model-driven elepment”

What is model-driven (software) development (MDD) in thetfiplace? MDD is an
emerging field. Our current perception of MDD is inspired Me]lor et al. 2003; Selic
2003; Favre 2004]: MDD aims at a model-centric approach ftwsoe development,
where models are systematically transformed into actuilvace applications. Nor-
mally, support for round-trip engineering is also requjregl, changes to the software
can be pushed back into the models. According to Sec. 2.inrgeas and models are
not in any simple equivalence or subsumption relationdip,one could still want to
argue that grammarware engineering is actually an instah®¢DD, i.e., grammar-
driven development (GDD) or MDD for grammarware. We do ngeobto this view,
and recent MDD literature indeed recognises grammarwaomagypical “technolog-
ical space” in the broader MDD context [Kurtev et al. 2002yriea2004]. In terms of
aspirations, the two fields differ as follows:

—MDD aspires to revolutionise software development by tairmy models over pro-
grams, modelling over programming, model transformat@res code revisions.

—Grammarware engineering is grammar-biased and “cornbezVait targets gram-
matical structure in all the grammar use cases that havedesting for decades.

In Fig. 4, we compare the mythical (or perceived) view andptfegposed view on grammar-
ware. The mythical view has not triggered an effort on gramvage engineering. The
proposed view emphasises the pervasiveness of ingraiaesngar dependencies as op-
posed to merely the grammars that reside within compilertfemds. The proposed view
justifies a major effort on grammarware engineering.
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Fig. 4. In need of a paradigm shifn the left-hand side, we only care about obvious gramman$onamely the
ratio of “all software” to “grammars in compiler front-ends On the right-hand side, we admit two important
facts: (i) there are many grammars other than those in coenfiibnt-ends; (ii) ingrained grammar dependencies
have a deep impact on most software.

5. PROMISES OF GRAMMARWARE ENGINEERING
At this point, the reader might face the following question:

Somehow we managed to deal with all these kinds of grammarfaadecades.
So what? That is, what are the potential benefits for IT?

The overall promise of grammarware engineering is thatati$eto improved quality of
grammarware and to increased productivity of grammarwaveldpment. These promises
should provide a good incentive since grammars permeat@aef systems and software
development. Of course, it is difficult to justify such gesleraims at this time. To provide
some concrete data, we will report on two showcases (or exaress stories). Afterwards,
we will identify more detailed promises on the basis of th&sawcases, but we will also
refer to further scattered experiences with engineeripg@s of grammarware.

5.1 Showcase: grammar recovery

This showcase is discussed in detail in [Lammel and Verk0e1ib; Lammel 2005]. Using
elements of the emerging engineering discipline for gramvaee, we were able to rapidly
recover a relatively correct and complete syntax definitbvS Cobol Il. The starting
point for this recovery project was IBM’s industrial standdor VS Cobol Il [IBM Cor-
poration 1993]. The syntax diagrams had to be extracted thensemi-formal document,
and about 400 transformations were applied to the raw syntasder to add missing con-
structs, to fix errors, and to ultimately obtain a grammat twauld be used for parsing.
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The recovery project was completed in just a few weeks, winicluded the development
of simple tools for diagram extraction and grammar tramsfion. After that period, we
were able to parse all the VS Cobol Il code that was availablest(several millions lines).
We should note that additional effort will be needed to depejeneral, mature tools, and
to deploy the syntax definitions in different industrialtsegs. Key to success was a sys-
tematic process, automation of grammar transformatiomd,pearser testing based on a
prototype technology. This project is part of a series ofilsinmecovery projects [van den
Brand et al. 1997, Sellink and Verhoef 2000a; van den Brarad. &000]. The recovered
syntax definition for Cobol is widely used by tool developansl researchers around the
world. This was the first freely available, high-quality $gx definition for Cobol in the
40 years of this language. (Even today, most businessalritode still resides in Cobol
portfolios [Arranga et al. 2000].) Industrial Cobol froetids are always considered intel-
lectual property because the costs for their developmehiraintenance are considerable
and the involved technologies are proprietary.

5.2 Showcase: APlI-fication

This showcase is discussed in detail in [Jong and Olivied20Wsing elements of the
emerging engineering discipline for grammarware, membkosir team dramatically im-
proved the architecture of the ASF+SDF Meta-EnvironmeinfKl993; van den Brand
et al. 2001]. This system supports generic language tecgypain the basis of executable
specifications for language-based, interactive tools. dureent system is the result of
many person years of design, development and evolution. system is being used in
industrial applications dealing with software renovatidamain-specific application gen-
eration [van den Brand et al. 1996], and others. The ardhitalcrevision of the system
concerned the usage of the internal ATerm format [van dended al. 2000] for generic
data representation. While infrastructures for generigleage functionality normally re-
quire such a generic format, a consequence is that progresrareeencouraged to encode
specific format knowledge of manipulated data in the codes Bads to heavily tangled
code. In the case of the C- and Java-based ASF+SDF MetagBnvant, knowledge of
several parse-tree formats and other specific formats wattesed all-over the ATerm-
based functionality in the system. The architectural ieniof the system aimed at an
“API-fication”. We use this term to denote the process of aeplg low-level APIs by
higher-level APIs. Here, an APl is viewed as a set of C fumdjaava methods, and that
alike. In the showcase, the low-level API supports processft plain ATerms, while sev-
eral high-level APIs support data access for different@#rse formats and others. The
high-level APIs were generated from grammars. The APlibcabf the ASF+SDF Meta-
Environment led to an explicit representation of specificrfats. Also, nearly half of the
manually written code was eliminated.

5.3 Promise: increased productivity

The recovery showcase suggests increased productivitpasrase of grammarware en-
gineering because other known figures for the developmenquialfty Cobol grammars are
in the range of two or three years [Lammel and Verhoef 20Q06;La]. We analyse the IT

grammars for the 500+ languagesuseenables the rapid production of quality tools for
automated software analysis and modification. Such tookersaftware re-/reverse engi-
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neering scalable in the view of software portfolios in thédlionis-of-lines-of-code range.

Currently, solution providers for legacy modernisatioa aot able to serve the full spec-
trum of languages and dialects; as noted by the Gartner JfBaginer Research 2003].
Apparently, parser development and source-code modeliimgery expensive in practise,
up to a degree that automated software analysis and modifidzcomes unaffordable.

Productivity gains are by no means restricted to grammavezg. Generally, systematic
processes and automation in the grammarware life cycleaser productivity.

5.4 Promise: improved evolvability

The API-fication showcase made extra grammatical structacessible to static typing.
This is clearly beneficial for evolution because types mak@utionary adaptations of
grammarware more self-checking. In fact, the API-ficatifforé was triggered by the
need to change the parse-tree format, which was found toogiffecult to perform on the

original system with its implicit grammar knowledge.

Improved evolvability can also be expected from technighasoperationalise linkde-
tween scattered grammar knowledge. That is, if grammagtoatture changes in the con-
text of one use case, then these changes can be propagatieertase cases. An example
of an operationalised link is the semi-automatic derivatiba tolerant parser from a more
strict grammar [Barnard 1981; Barnard and Holt 1982; Klesemd Lammel 2003].

5.5 Promise: improved robustness

Static typingof grammarware improves its robustness because it rulegnoansistent
grammar patterns in code. That is, the type system of the gfgedfication or program-
ming language is exploited to enforce adherence to a granfrharAPI-fication showcase
illustrates that generic language technology can requeeial efforts. The aforemen-
tioned operationalisation of linkdetween scattered grammar knowledge tackles robust-
ness as well: it makes sure that different components 'tatké same language’, which
is clearly important for robust interoperability. Robusss of grammarware will also be
improved by effectiveeuse Unfortunately, we do not yet fully understand how to reuse
grammarware. Contemporary grammarware tends to be too lititeaotoo technology-
dependent, and too application-specific for reuse. Finatlipustness of grammarware
will also be improved bygrammar-based testingMost notably, differential testing and
stress testing can be supported by grammar-based testiela¢mation using a stochas-
tic approach or even proper coverage criteria. Applicatioihgrammar-based testing are
reported in [McKeeman 1998; Sirer and Bershad 1999; Vee20858].

5.6 Promise: less patches, more enhancements

The promises of grammarware engineering can be comparbdkaivn benefits of mod-
ern development methodologies. In [Dekleva 1992], Dekbkddressed the (as it turned
out unsubstantiated) assumption that the improved guaElaysystem’s structure and other
improvements would reduce maintenance time. This was agdhmaisconception at that
time. Dekleva summarised:

“The survey findings do not support the proposition that tipglecation of
modern information systems development methodologyaksenaintenance
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time. However, some benefits are identified. Time spent orgenwoy error
correction, as well as the number of system failures, dessrdasignificantly
with the application of modern methodology. Systems dpedlwith modern
methodologies seem to facilitate making greater changdarintionality as
the system changes”

Likewise, we expect that patching work in grammarware negiance will diminish, fail-
ures of grammarware are avoided by construction, so tha¢ timoe is left for enhancing
grammarware, while enhancements do not harm robustnebge grammarware. In fact
this is the main motive for aiming at an engineering disaiplior grammarware.

6. PRINCIPLES OF GRAMMARWARE ENGINEERING

We contend that an engineering discipline for grammarvet@be based on the principles
that follow. None of the principles should be surprisingcsinthey are all adopted from
contemporary common sense in software engineering. Tha mihat contemporary
grammarware development doest adhere to these principles, despite their advisability.
However, there exist several supportive samples of usiesgtprinciples. We will provide
corresponding references in due course.

6.1 Principle: start from base-line grammars

When designing grammarware, too early commitment to a eacise case, specific tech-
nology (meta-grammarware), and other implementationalcgls shall be avoided. To
this end, grammarware development shall depart from pugrars: more or less plain
structural descriptions using a fundamental notation.hiithe grammarware life cycle,
we use the terrbase-line grammato denote such grammars. Base-line grammars should
be sufficiently structured and annotated to be useful in ttergial derivation of concrete
syntaxes, object models, and other typical forms of use-spscific grammars. If neces-
sary, base-line grammars can be complemented by assoristtaiats and semantics for
the described structures. The constraints and the seraaiidd! be “universal”, i.e., they
must not be specific to a use case.

6.2 Principle: customise for grammar use cases

We derive new grammars and enriched structural specifitatita customisation from
base-line grammars. Here are some existing techniquesstiatise this principle:

—In [Kadhim and Waite 1996; Wile 1997], approaches for theragionalisation of the
link between concrete and abstract syntax definition areribexl. That is, concrete
syntax definitions are customised into abstract syntax itiefis.

—In [Aho et al. 1986; Lohmann et al. 2004], advanced tramsfirons for the removal
of left-recursion in a context-free grammar are describids sort of customisation is
a preparatory step when we want to commit to basic parsingt@ogy for recursive
descent. The cited approaches are advanced in so far thefdraation is not limited
to context-free grammars but the grammar transformatiaisis lifted to the level of
attribute grammars. Here, we assume that the attributergeasnmodel parse-tree syn-
thesis. The approaches guarantee that the synthesisedtpags daot change, even
though the underlying grammar does change.
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—Customisation is expected to be useful for converting ueenmars into parser spec-
ifications. Relevant idioms for parser specification existbundance. For instance,
there are idioms that address disambiguation: extra acfarsemantics-directed pars-
ing [Parr and Quong 1994; Breuer and Bowen 1995], decoratezht [Malloy et al.
2003], filters on parse-tree forests [Klint and Visser 19¢ah) den Brand et al. 2002].
These idioms tend to be coupled with specific technologyo Adge can not exercise
these idioms in an incremental fashion such that a given grancould be adapted in
the context of a specific use case.

—A very limited form of grammar customisation is provided GYPK — the Grammar
Deployment Kit [Kort et al. 2002], which generates differearser specifications from
a general grammar notation. Some minor details of generaio be controlled via a
trivial command-line interface. Otherwise, GDK assumes tirammars are prepared
prior to export to the chosen parser technology — by meansaofignar transformations.

The present-day approach to customisation is predominadthoc and manual. A gen-
eral view on automated grammar customisation could be basexbncepts of aspect-
oriented programming [Kiczales et al. 1997; Elrad et al. Qfending an adoption to
grammarware. That is, any customisation step could be desdhe superimposition of
advice onto an existing grammar or grammar-dependentaoftaomponent. This super-
imposition would be realised by grammarware transfornmaticsing a weaving semantics.
Furthermore, concepts of model-driven development [Madloal. 2003; Selic 2003], in
particular, model transformations [Sendall and Kozackiy®803] could provide a useful
organisation principle for customisation. That is, theeblise grammar in grammarware
engineering can be viewed as the platform-independent hiBtd) in model-driven ar-
chitecture (MDA [OMG 2004]), and each grammar use case, dr gdaermediate step can
be viewed as a platform-specific model (PSM).

6.3 Principle: separate concerns in grammarware

Separation of concerns in software (including grammarpagipposed to facilitate reuse
and modular reasoning [Dijkstra 1976]. A given piece of graarware indeed tends to deal
with several concerns. One can distinguish grammar coedesn, modularisation of the
grammar as such), and grammar-based concerns (i.e., migdtitan of functionality on
top of the grammar). For instance, in a typical re-/reversgreering front-end, one can
find the following grammar concerns (which are unfortunatelt separated in practise):
—Base syntax.

—Comments and layout (indentation).

—Preprocessing syntax.

—Error handling rules.

A re-engineering transformation could exhibit the follogsigrammar-based concerns:

—The primary transformation.
—Preparatory or on-the-fly analyses.
—A helper concern for change logging.
—A helper concern for sanity checking.
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Some techniques for the separation of grammar concernses@ilded in [Purtilo and

Callahan 1989; Kadhim and Waite 1996; Malton et al. 2001,dg&®003]. Research on
modular attribute grammars has resulted in some technfquiree separation of grammar-
based concerns [Farrow et al. 1992; Kastens and Waite 129driel 1999a; Lammel and
Riedewald 1999; Lammel 1999b; de Moor et al. 2000]. Theeenaixed techniques such
as origin tracking in term rewriting [van Deursen et al. 1P@Bd parse trees with ‘active’
annotations [Kort and Lammel 2003b]. We contend thesenigcies need to be further
developed and marketed before they are widely adopted.

An effective separation of concerns in grammarware ofteuires advanced means of
modularisation. To give an example, let us consider pretigting program text. One
concern is to define a comprehensive set of pretty-prinsride all constructs. Another
potential concernis the preservation of preexisting fatimginformation [de Jonge 2002].
The challenge is that these concerns (or features) inteiticeach other in a complicated,
so far insufficiently understood manner.

6.4 Principle: evolve grammarware by transformation

The present-day approach to grammarware evolution is prgdmtly ad-hoc and manual.

We propose that evolution of grammarware is operation@hsa automated transforma-
tions. Since grammars permeate grammar-dependent seftagy grammar change has
a strong impact. Hence, the evolution of grammatical stmectmust be effectively trans-

posed to the level of grammar-dependent software compsneFtiat is, any grammar

transformation has to be completed by a transformationlajrainmar-dependent func-

tionality. Likewise, any grammatically structured datasigject to a data transformation
in case the type-providing grammar has been changed. Coesty we face transforma-

tions at three levels:

—Grammar transformations.
—Software transformations for grammar-dependent soéwar
—Data transformations for grammatically structure data.

Evolution must also handle the issue of grammar variatioasreside in different software
components. The related grammars either evolve jointliheevolution of one grammar
(use case) must be hidden from the other grammar (use casegaéys of a “grammar
bridge”, i.e., a grammar-based conversion component.

In Fig. 5, we instantiate the different levels of grammamvavolution for XML:

Grammarware | XML

Grammar XML schema (or DTD)
Grammar-dependent program XML document processor (e.g., XSLT)
Grammatically structured dataXML data (XML stream / document)

The middle layer in the figure represents an XML-schema foamstion. The top and the
bottom layers complete the primary schema transformadide imeaningful for dependent
document-processing functionality and corresponding Xtteams.

The derivation of a data transformation from a schema toansdtion is relatively well
understood in the context of databases; cf. database samamings coupled with an
instance mapping [Hainaut et al. 1993; Henrad et al. 2002yo8@ and Lindow 2003].
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Input ‘ Output
Transformation
doc. processor >1 doc. processor
Transformation
XML schema ‘ >8 XML schema
XML data > XML data
Transformation

Fig. 5. Multi-level transformations in the XML settingThe primary transformation is defined at the XML
schema level, while the transformations at the documentgssing level (e.g., XSLT) and the XML-stream level
are supposed to be implied.

Some similar work has been reported on XML grammars [Lamenel Lohmann 2001;
IBM Research 2002]. More generally, we view pairs of transfations on schema and
data as an important instance of the notion of “coupled foarsation” [Lammel 20044a].

The derivation of a program transformation from a schem@sfamation is weakly un-

derstood both in the XML context and the database contexiudder, object-oriented pro-
gram refactoring [Griswold and Notkin 1993; Opdyke 199Ztamtiates this sort of cou-
pling, where class structures can be refactored and allndkgpe method implementations
are “automatically” updated. Clearly, evolutionary treomsnations can go beyond mere
refactoring. In [Kort and Lammel 2003a], we consider cadpiransformations for types
and functions in a functional program, while we even go beyefactoring. Some forms
of model transformations [Sendall and Kozaczynski 2003]tlfie sense of the emerging
field of model-driven development) might be applicable ia lammarware context.

Evolution comprises refactoring, enhancement, as wellesneup. In the broader sense,
evolution also comprises re-targeting grammarware fromteshnology to another. Ba-
sic grammar transformations for refactoring, enhancepasrd clean-up were developed
in [Lammel 2001a]. Evolutionary transformations of sadtw have generally not yet re-
ceived much attention, except for the refactoring mode ofwgion. The situation is not
different for grammarware, but some initial ideas are sunised in [Lammel 1999b;
2004b], where rule-based programs are transformed in a euaflways, including some
grammar-biased modifications, some of them going beyordi@fing.

6.5 Principle: reverse-engineer legacy grammarware

We can not assume that suitable base-line grammars ardyragdilable for all legacy

grammarware. However, it is fair to assume that there is semeeded grammar knowl-
edge available, from which base-line grammars can be reed\® means of reverse en-
gineering. The grammar knowledge can reside in data, eng.can infer an XML schema
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from given XML documents. The grammar knowledge can alsaleei source code
or in a semi-structured document, e.g., in a hand-craftedrsavze-descent parser or in a
semi-formal reference manual. The latter scenario wasigésrl in detail in Sec. 5.1.

The recovery of base-line grammars is an issue for grammarioad sense, not just for
syntax definitions of widely used programming languagess & common maintenance
scenario to recover grammars for DSLs and (data-access) Alpical triggers for such
recovery efforts are the following:

—A proprietary language or API must be replaced.
—New grammar-based tools have to be developed.
—The language or API at hand must be documented.

Here are two specific examples that illustrate the link betwecovery and enabled for-
ward engineering. In [Sellink and Verhoef 2000a; van demBrat al. 2000], we describe
a project related to the proprietary language PLEX usedias&on. The project delivered
arecovered PLEX grammar, a documentation of PLEX, and a mesepfor PLEX. In [de
Jonge and Monajemi 2001], a project is described that etatéhe proprietary SDL di-
alect used at Lucent Technologies. The project deliveredavered SDL grammar, and a
number of SDL tools, e.g., a graph generator for finite staehimes.

6.6 Principle: ensure quality of grammarware

We need quality notions or metrics in the first place. We negdmated metrics calcula-
tion in the second place. We need effective (computablénigees to assess quality of
grammarware and to steer the improvement of quality. Thisld@ment has to distinguish
grammars vs. grammar-dependent software. As far as grasranaiconcerned, we need
to identify grammar metrics, grammar styles, and notionsafectness and complete-
ness. Quality attributes of grammar-dependent softwea Isb these: correctness in the
sense of differential testing, conformance in the sensemfitcmance testing, performance
attributes, complexity metrics, type validation, and othe

Some grammar metrics have been defined and used in [Sellthkerhoef 2000a] in the
context of assessing the code quality and the status of gaasnduring grammar reverse
engineering. Specific notions of relative grammar corressrand completeness were de-
fined in [Lammel 2001b] with the goal of aligning a grammamtproprietary (i.e., black
box) reference parser.

Techniques for quality assessment and improvement formeardependent software might
explicitly involve the grammatical structure at hand, inigthcase we call these tech-
niquesgrammar-basedFor instance, grammar-based testing of grammar-depésoftn
ware would be based on test-data sets that cover the untgdyammar [Purdom 1972;
Lammel and Harm 2001]. Grammar-based testing can be [hagigomated by grammar-
based test-data generation; see [Burgess 1994; McKeen®8] id compiler testing,
and [Maurer 1990; Sirer and Bershad 1999] for other settirgiearly, validation of a
grammar-dependent software component is not necessaaifyrgar-based. For instance,
validation by means of manually developed conformancesyiMIST 2003; Malloy et al.
2002] might focus on 1/O behaviour rather than grammatitaksure.
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Fig. 6. The grammarware life cycl&ase-line grammars do not commit to a technology or a use ddsestack

in the middle lists some grammar use cases, which are debyeistomisation. Both base-line grammars and
grammar use cases can be subject to different sorts of éwojuvhile evolution of base-line grammars should
be preferred over evolution of grammar use cases, whenessilge. Grammar use cases can be implemented
by meta-grammarware or by grammar-based programming igdes. The grammar life cycle is enabled by
grammar recovery, which recovers base-line grammars fropiémentations or others, if necessary.

Evolution — | XML serialiser

Base-line
grammar

Testing

Visitor framework

—— | Rendered manual

6.7 The grammarware life cycle

The discussed principles can be integrated in a grammantifareycle; see Fig. 6. By
having a proper grammarware life-cycle we can invigoragentbrmal software life-cycle.
Most notably, the distinction of base-line grammars vsngrear use cases allows us to
apply evolutionary transformations to the former such that adaptations of the latter
are mostly implied. That is, grammar use cases are supposeddvolve with base-line
grammars. There are clearly evolution scenarios that &erémtly technology- and use-
case-specific, in which case evolutionary transformatioast be carried out on grammar
use cases.

To align the grammarware life cycle with the normal softwhiie cycle, we will briefly
go through Fig. 6. We will focus oforward engineering— knowing that we will neglect
some trips through the figure. There are the following phases

—Provision of base-line grammars.

—~Customisation to derive grammar use cases.

—Implementation to obtain actual grammar-dependent soéw

—(Potentially grammar-based) testing of the grammar-deeet software.

Here is one scenario for forward engineering from Fig. 6ngdrom a base-line grammar

to an object-orientedisitor frameworkthrough acustomised class hierarchyhe deriva-
tion of the use case requires a class dictionary. (Hendeereiie base-line grammar must
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be a class dictionary, or it must be amenable to a mappingl#i@ers a class dictionary.)
For the sake of an interesting (and realistic) customisagguirement, we assume that the
final object structures are supposed to carry extra linksiserdef relations. To this end,
the customisation has to enhance the class hierarchy acgbrdvhen compared to the
base-line grammar. The enhanced class hierarchy can nowri@emented” by generat-
ing a visitor framework for traversing object structures,tas pursued in [Visser 2001b]
and elsewhere. Ultimately, we obtained a component of gramtapendent software: a
compiled and packaged visitor framework.

6.8 Automated grammar transformations

Several principles of grammarware engineering can be stggbaehrough transforma-
tions, which are to be automated for reasons of traceakility scalability. We will
now focus on grammar transformations, assuming that theyatso steer the provision
of grammar-aware transformations of grammar-dependéivta@. Grammarware engi-
neering employs grammar transformations in the senserata-programming technique
A grammarware engineer “codes” grammar transformatiorexpess intents of evolu-
tion, customisation, and recovery. (This view differs fraompiler construction [Aho
et al. 1986], where grammar transformations are executezhlser generators and other
tools in a black-box fashion.) Grammar transformationsloamecorded in scripts. One
can envisage interactive tool support for grammar transéion.

Let us consider some examples. We will illustrate recoveamgformations for a syn-
tax definition of Cobol. The reported examples were encoedta the aforementioned
recovery project [Lammel and Verhoef 2001b] for a Cobolngmaar. According to the
industrial standard for VS Cobol Il [IBM Corporation 1993k ADD statement can be of
the following form (in EBNF notation):

add- st atement =
"ADD' (identifier|literal)+ "TO' (identifier "ROUNDED'?)+
("ON'? "SI ZE" "ERROR' inperative-statenent)?
("NOr" "ON'? "SI ZE" "ERROR' inperative-statenment)?
"END- ADD" ?
/1 two other forns of ADD statenents omitted

This production is actually incomplete in terms of the irtted syntax.
We quote an informal rule from IBM’s VS Cobol Il reference WBCorporation 1993]:

A series of imperative statements can be specified
whenever an imperative statement is allowed.

To implement this rule, we can apply a transformation oeiganer alise as follows:

general i se inperative-statenent
to inperative-statenent+

The transformation replaces the occurrences of the noirtalimper at i ve- st at enent

by the EBNF phrasénper at i ve- st at ement +, as suggested by the informal rule. We
call this a generalisation because the resulting grammaoig general than the original
one — in the formal sense of the generated language. Here isshlt:

add- st at enent =
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"ADD' (identifier|literal)+ "TO" (identifier "ROUNDED'?)+
("ON'? "SI ZE" "ERROR' inperative-statenent+)?

("NOT" "ON'? "SI ZE" "ERROR' inperative-statenent+)?

" END- ADD" ?

We will also illustrate transformations for grammar retagtg. TheON- SI ZE- ERROR
andNOT- ON- S| ZE- ERROR phrases occur in other forms ADD-statements and many
other Cobol statements again and again. So we single ow fifeases by extraction,
which will lead to a more concise grammar. We apply the follmpransformations:

extract "ON'? "SI ZE" "ERROR' inperative-statenment+
as on-size-error-phrase

extract "NOT" on-size-error-phrase
as not-on-size-error-phrase

That is, we extract some parts of the productionsADD-statements (and others) such
that they constitute new nonterminala- si ze- err or andnot - on-si ze-error.
Consequently, the modified production looks as follows:

add- st at enent =

"ADD' ( identifier | literal )+ "TO'" ( identifier "ROUNDED'? )+
on-si ze-error? not-on-size-error?
" END- ADD" ?

Generally, one can classify grammar transformations im$esf usage scenarios (and the
assorted preservation properties). We have seen exanigleseralisation and extraction.
Here is a more profound list of scenarios:

—Refactoring a grammar is improved to become more concise, more readadter
amenable to subsequent changes. Refactoring can be useg evwlution, customisa-
tion, and recovery. Extraction (see above) is a form of tteféeg.

—Style conversiana grammar of a certain normal form (“style”) is derived. kwstance,
regular operators can be eliminated in an EBNF to arrive atre BNF. (Style con-
versions preserve the generated language, just as refactiores. Style conversion is a
global, systematic operation, while refactoring is noflgnaimore specific, programmer-
initiated operation.)

—Generalisation productions are added or regular expressions are gesetal the
sense of extending the generated language. Generalissiparticularly meaningful
during grammar evolution and grammar recovery.

—Restriction the opposite of generalisation.

—Insertion rules are enhanced by inserting extra sub-phrases. Rantes a base-line
grammar could be customised as a parse tree format suclnseatsd sub-phrases cater
for position information or comments and layout.

—Deletion the opposite of insertion.

—Amalgamation two ore more rules are merged into a single rule. (This sbitams-
formation can be viewed as a generalising transformatidovied by the elimination
of doubles in the rule set.) Amalgamation caters for singaifiproblem-specific gram-
mars. A good example of amalgamation can be found in the wodgde parsing [Dean
et al. 2002; 2003].
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—Separationthe opposite of amalgamation.

—Transformations supporting grammar propertiesg., conflict resolution for LALR(1),
or disambiguation for generalised LR parsing. Eventuatigny of these transforma-
tions cannot be described on pure grammars alone, but thesriavolve commitment
to a richer grammar notation or even to a specific technolagleést, as of today).

A number of systems for language processing have been médarwsbkd to support cer-
tain forms of automated grammar transformations (in thesefgrammarware engineer-
ing); we know of uses of ASF+SDF Meta-Environment, LDL, Pap&trafunski, Stratego,
TXL — as discussed in [Lammel and Wachsmuth 2001; LammeNamnhoef 2001b; Wile
1997; Lammel and Visser 2003; de Jonge et al. 2001; Dean 20@2].

7. ALIST OF RESEARCH CHALLENGES

We have encountered various techniques throughout thelagehich are indeed very ver-
satile, and which substantiate that we are facing the emeegsf an engineering discipline
for grammarware. We contend that a proper research effogeded to study foundations
in a systematic manner, and to deliver best practises witbradegree of automation and
generality. The required effort should not be underesthaio give an example, so far,
there is no reasonably universal operator suite for grantraasformations despite all re-
ported efforts. Presumably, the toughest challenge isdwige faithful coverage for the

many different usage scenarios for these transformatems,to be meaningful to most
if not all grammar notations and grammar-based programreé@tgps. This large scale
makes us think of a public research agenda as opposed totaatmmproject.

The following list entails research issues on foundatiamethodology, best practises, tool
support and empirical matters. Each item is self-contaiaad could serve as a skeleton
of a PhD project (except the last ormaiscellaneous

7.1 An interoperational web of grammar forms

We have enumerated many different grammar notations. ktipeathere exist all kinds of
more or less ad-hoc mappings between these notations. $tange, regular operators can
be transformed away such that pure BNF notation is sufficidigo, context-free gram-
mars can be refactored such that the productions corresponddiately to abstract and
concrete classes in an object-oriented inheritance leieyat)ltimately, we need a compre-
hensive grammar web, where the side conditions and immitaitof mapping one notation
to the other are described in an operational and pragmatinera— with reference to de-
tails of grammar use cases. Some relevant results can bd fodiKoskimies 1991; van
der Meulen 1994; de Jonge and Visser 2000; Kort et al. 2002;adghlin 2002; Jong and
Olivier 2004; Hinze et al. 2004; Herranz and Nogueira 200%kre exist various theoret-
ical expressiveness results about different grammar fofirhese results are relevant and
should be exploited, but they must not be confused with maltt meaningful mappings
between the grammar notations.

7.2 A collection of grammarware properties

What is the complexity of a grammar? What is the grammartedleomplexity of grammar-
dependent functionality? What are effective notions ofigraar equivalence and friends?
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What is the distance between two grammars? What are préiseryaoperties, as they
can be used to discipline grammar transformations? Whagismmar slice? What is a
grammar module? What is the grammar contract that is repped in grammar-dependent
functionality? What are typical analyses to be performedj@mmars? And so on. We
presume that the development of a comprehensive frameworgirammarware proper-
ties can be based on existing work for grammar-flow analyéénjck and Wilhelm 1991;
Jeuring and Swierstra 1994].

7.3 A framework for grammar transformations

What are suitable primitives? What are the compositiongypies? What are pre- and
post-conditions? How to infer transformations from giveargmars? What classes of
transformations do exist? How do transformations applpssgrammar notation? How
to reuse such pure grammar transformations in the contecdsibmisation for grammar
use cases? How to support data and grammar integration byngae transformations?
And so on. One should aim at an operator suite that coversatieus transformation
scenarios including refactoring, disambiguation, norsadlon, enhancement and clean-
up. The final deliverable can be a domain-specific languaggrionmar transformation,
which is simple to use, and which comes with a dedicated th&worformal reasoning
about grammar transformations. Ideally, the transforometitnguage should lend itself to
interactive tool support for transformation. Relevanutescan be found in [Wile 1997;
Pepper 1999; Bernstein and Rahm 2001; Lammel and Verhdfl20.ammel 2001a;
Lammel and Wachsmuth 2001; Dean et al. 2002; Erwig 2003].

7.4 Co-evolution of grammar-dependent software

We recall the archetypal example from Sec. 6.4: the co-¢enlwf an XSLT program in
reply to a change of the underlying XML schema. Another exarigthe co-evolution of
a customisation concern for parser tweaking or parse-trestaiction in reply to a change
of the underlying syntax. There exists related worked onsthigiect of the joint trans-
formation of grammars and dependent declarative (ruled)geograms [Lammel 1999b;
Lammel and Riedewald 1999; Lammel 1999a; Lohmann anddiatti 2003; Kort and
Lammel 2003a; Lohmann et al. 2004; Lammel 2004b]. We attopterm co-evolution
from [D’Hondt et al. 2000; Wuyts 2001; Favre 2003], where @&ssspecifically used in the
context of joint adaptation of object-oriented designs enplementations. We propose
that co-evolution of grammar-dependent software shoul@fdy@oached in a language-
parametric manner — as far as the programming language é#onrgar-dependent func-
tionality is concerned. This sort of genericity is desctib® some extent, in [Lammel
2002; Heering and Lammel 2004].

7.5 Comprehensive grammarware testing

What are grammar-based coverage criteria? What are meastgtacterise problem-
specific test cases? What techniques are needed to analyseage and to generate
test data? There exist few coverage criteria for grammausddm’s rule coverage [Pur-
dom 1972] for context-free grammars, and refinements tfigr@mmel and Harm 2001;
Lammel 2001b]. Test-data generation necessitates @ stfitechniques:

—to deal with the standard oracle problem,
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—to minimise test cases that act as symptoms,
—to enforce non-structural constraints,

—to accomplish negative test cases, and

—to achieve scalability for automated testing.

Specific results regarding some of these issues can be faRdiidom 1972; Celentano
et al. 1980; Kastens 1980; Maurer 1990; Burgess 1994; Mclkieel898; Sirer and Ber-
shad 1999; Harm and Lammel 2000].

7.6 Parsing technology revisited

Even basic parsing regimes are still subject to ongoingarebeand defence. What is
the ultimate regime? Is it generalised LR-parsing with pduleforms of disambigua-
tion [Klint and Visser 1994; van den Brand et al. 2002]; isoptdown parsing but with
idioms for semantics direction [Parr and Quong 1994; BrandrBowen 1995]; itis simple
LALR(1) parsing with token decoration [Malloy et al. 20083;it plain recursive descent
parsing with provisions for limiting backtracking [Breuand Bowen 1995; Kort et al.
2002]? Perhaps, there is no ultimate regime. So then, whasdgaevhat regime? How to
migrate from one regime to the other? Analysing the engingexspects of different pars-
ing technologies, and allowing programmers to detach tebras, to some extent, from
specific technology is the perfect showcase for grammaremsgeeering. This showcase
really requires best practises and corresponding tool@tippngineering aspects of parser
development are largely neglected in the literature, butefer to [Crawford 1982] for a
small but good example, where some engineering guideloreké construction of LALR
grammars are provided.

7.7 Grammar-aware API migration

Consider the following archetypal example. Given is an ab@@iented program that ac-
cess XML data through the simple (generic) Document Objesd® (DOM [W3C 2003]).
Let us assume that the accessed data is required to alw@jeteagainst some given XML
schema. In that case, static typing of the program could Ipeawed by making use of an
XML data binding technology (such as JAXB [Sun Microsyste?@1] in the case of
the Java platform). That is, XML access will be based on es#sat are generated from
the XML schema. The challenge is that APl migration is weakiglerstood in terms of
the required code transformations. More generally, thestipre is: what grammar-based
methods can be provided for the support of API migrationéptally also including APls
other than obvious data-access APIs)?

7.8 Modular grammarware development

What advanced means of modular composition can improve relugrammars, grammar
slices, other grammar fragments, and grammar-dependeettdnality? What are generic
aspects for grammar-dependent functionality, and whath@& eneans to instantiate them?
Modular or even aspect-oriented programming [Kiczalesl.e1297; Elrad et al. 2001]
should be fully instantiated for grammarware. Relevantltsxan be found in [Farrow
et al. 1992; van Deursen et al. 1993; Kastens and Waite 1%8amel 1999b; 1999a; de
Moor et al. 2000; Malton et al. 2001; Swierstra 2001; Wint@é®2; Cordy 2003; Kort and
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Lammel 2003b]. An archetypal scenario is parser developma&chieving an effective
modularisation of all the concerns in the following list — tp of mainstream parsing
technologies — would be a major step forward in the parsiegar

—Concrete syntax.

—Abstract syntax.

—Lexical syntax.

—Pre-processing syntax.

—Parse-error recovery.

—Parse-tree construction.

—Semantics-directed parsing.

—Computations for attributed parse-trees.
—Annotation of parse trees with position information.

7.9 Grammarware debugging

It is common practise to debug grammarware just in the sameasaany other soft-
ware — i.e., without actual grammar-awareness. This is roessarily appropriate. For
instance, consider grammar-based programming usingwisithniques in object-oriented
programming. Stepping through code for tree walking, orié&édy to inspect code that is
not related to the problem-specific parts of the traversedn@nar-aware breakpoints with
assorted use-case-specific debug information are neetiede €xists related work on vi-
sualising the inner workings of compilers [Schmitz 1992idan debugging models for
generic language technology [Olivier 2000]. In additioml&bugging grammar-dependent
software, there is also a need for debugging grammars, lystlees. For instance, con-
sider the desirable property of a grammar to be unambigudfindle the property is gen-
erally undecidable, one can perhaps use static analysgsasu.RE) conflict analysis for
smallerks, as to obtain indications of sources of ambiguity.

7.10 Adaptive grammarware

In some grammarware development projects, the use of Bngirecise grammars is not
necessarily the preferred option — from an engineeringtpifimiew. Less precise gram-
mars, and more adaptive grammarware might be preferableeor mandatory. For in-
stance, a precise grammar might simply not exist for the ase at hand — as in the case
of processing interactive input with transient syntax esrdzven in case a precise gram-
mar is obtainablén principle, precision might still be too expensive. Also, over-pramis
can pose a barrier for evolution of grammarware and for ucigated variations on gram-
matical structure. Examples of adaptive techniques argvkno parsing [Barnard 1981,
Barnard and Holt 1982; Koppler 1997; Moonen 2001; Klusenerlzammel 2003; Synyt-
skyy et al. 2003]. Clearly, adaptiveness triggers additi@moncerns such as correctness,
as we discuss for parsing in [Klusener and Lammel 2003].r8 iea need for a general
methodology for adaptive grammarware.
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7.11 Grammar inference put to work

Grammar recovery is an essential phase in the grammaniaytile. One option for re-
covery is to extract available traces of grammatical stmgtand to issue transformations
that lead to a useful grammar [Lammel and Verhoef 2001b]akernative form of gram-
mar recovery can be based on grammar inference. While thereonsiderable body of
theoretical results on grammar inference of context-freengnars (and other grammars)
from data [Makinen 1992; Koshiba et al. 2000], there iddigxperience with applying
grammar inference to non-trivial software engineeringbfgms. In particular, known
efforts to infer grammars for use in programming-languages@rs are quite limited in
scale; see, e.g., [Mernik et al. 2003; Javed et al. 2004; Pebal. 2005]. For instance,
in [Mernik et al. 2003], the syntax of a small domain-spedgdicguage is inferred using
an evolutionary approach, namely genetic programming. &ve Imot yet seen work that
clearly motivates grammar inference from an engineeringtd view. How to make sure
that the grammar will be meaningful to the grammarware ezggid How to make infer-
ence predictable such that similar results are obtainedligintly different inputs? How
to take into account informal knowledge about the grammar® kb test the grammar as
inference proceeds?

7.12 Reconciliation for meta-grammarware

Consider the following archetypal example, which deal$wlite evolution of a domain-
specific language (DSL [van Deursen et al. 2000]). We asstaettie DSL is imple-
mented by the generation of low-level code from high-levBLzode. We assume that the
developer can readily customise the generated code, whenegessary. The evolution
of the DSL or alterations of the generator tool make it likéilgit code has to be regener-
ated, which poses the following challenge. The newly gardreode has to be reconciled
with previously customised code. Considering (softwarejlets rather than grammars (or
grammarware), such reconciliation issues relatetmd-trip engineeringn model-driven
development [Mellor et al. 2003; Selic 2003]. In that caspladform-independent model
(PIM) is transformed into a platform-specific model (PSMylaventually into code. Any
customisation of PSM (or code) would need to be pushed battietBIM.

7.13 Grammarware life cycling

Processes for typical life-cycle scenarios of recoverglion, and customisation need to
be defined in detail. This development shall differentiagous grammar notations and
grammar use cases. For instance, there will be variatiopsaafesses that are specific
to document processors vs. language processors. The defioegsses are supposed to
highlight the potential for automated transformation,ljyassessment, and choice points
for technology options. This development will eventualdidaup to a collection of meth-
ods, best practises and comprehensive processes thatroathéocore of an engineering
handbook for grammarware.

7.14 Comprehensive grammarware tooling

The future grammarware engineer shall be provided with air@mment forComputer-
Aided Grammarware Engineerin@ AGE) — akin to the classic term CASE (Computer-
Aided Software Engineering). A CAGE environment shoulderawnteractive and batch-
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mode grammar transformations, co-evolution of grammaeddent programs, test-set
generation, coverage visualisation, calculation of grammetrics, indication of bad smells,
customisation of grammars, and others. CAGE tooling needi®&tmade available in in-
tegrated development environments such as Eclipse or M&udio. Given the recent
surge of model-driven development (MDD), one might add CAG&ing to MDD envi-
ronments. For instance, tool support for technology-g$peciuistomisation of grammars
(as in the parsing context) could be provided as transfaomatartridges in the sense of
model-driven architecture [OMG 2004].

7.15 Miscellaneous

What are measurable losses caused by grammarware hackihgPavé success stories,
and what are key factors for success? What is the mid- andtknng perspective for the
distribution of different kinds of grammarware? What doamigations know about their
grammarware assets? How to enable the creation of such &dge/[Klint and Verhoef
2002]? What are further insights in the grammarware dileprand how does this compare
to other dilemmas in software engineering? What lessonbedearnt from unsuccessful
adoption of grammarware technology? (As a reviewer phriasebex andyacc are the
only tools the world out there has understood; the rest wasrag. Why?".)

8. SUMMARY

We argued that current software engineering practisesnargficiently aware of gram-

mars, which is manifested by an ad-hoc and manual treatnfdmtb — grammars as

such and grammatical structure as it occurs in software commts. We compiled an

agenda that is meant to stimulate research on the engigessects of grammarware. We
identified promises and principles of the engineering gigué for grammarware.

The promises are increased productivity of grammarwareldpwment, improved evolv-
ability and improved robustness of grammarware. The puiesiare akin to state-of-the-
art software engineering. For instance, the principle ‘femgent by customisation” cor-
responds to a grammarware-tailored instance of modetdiievelopment [Mellor et al.
2003; OMG 2004]; the principle “separate concerns” requadvanced means of modu-
larisation, just as in aspect-oriented programming [Kiez&t al. 1997; Elrad et al. 2001];
the principles “evolve by transformation” and “ensure dguyalis well in line with agile
methodologies as they are becoming common in today’s stéteragineering.

We called for a major research effort, which is justified by prervasiveness of grammars in
software systems and development processes. We providddtastial list of challenges,
which can be viewed as skeletons for PhD projects. Suchesigdk need to be addressed
in order to make progress with the emerging discipline fangmarware engineering.
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